Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38818580

RESUMEN

Fibroblast growth factor (FGF) isoform 13, a distinct type of FGF, boasts significant potential for therapeutic intervention in cardiovascular dysfunctions. However, its impact on regulating fibrosis remains unexplored. This study aims to elucidate the role and mechanism of FGF13 on cardiac fibrosis. Here, we show that following transverse aortic constriction (TAC) surgery, interstitial fibrosis and collagen content increase in mice, along with reduced ejection fraction and fractional shortening, augmented heart mass. However, following Fgf13 deletion, interstitial fibrosis is decreased, ejection fraction and fractional shortening are increased, and heart mass is decreased, compared with those in the TAC group. Mechanistically, incubation of cardiac fibroblasts with transforming growth factor ß (TGFß) increases the expressions of types I and III collagen proteins, as well as α-smooth muscle actin (α-SMA) proteins, and enhances fibroblast proliferation and migration. In the absence of Fgf13, the expressions of these proteins are decreased, and fibroblast proliferation and migration are suppressed, compared with those in the TGFß-stimulated group. Overexpression of FGF13, but not FGF13 mutants defective in microtubule binding and stabilization, rescues the decrease in collagen and α-SMA protein and weakens the proliferation and migration function of the Fgf13 knockdown group. Furthermore, Fgf13 knockdown decreases ROCK protein expression via microtubule disruption. Collectively, cardiac Fgf13 knockdown protects the heart from fibrosis in response to haemodynamic stress by modulating microtubule stabilization and ROCK signaling pathway.

2.
FASEB J ; 38(10): e23661, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38733310

RESUMEN

Itching is an aversive somatosensation that triggers the desire to scratch. Transient receptor potential (TRP) channel proteins are key players in acute and chronic itch. However, whether the modulatory effect of fibroblast growth factor 13 (FGF13) on acute and chronic itch is associated with TRP channel proteins is unclear. Here, we demonstrated that conditional knockout of Fgf13 in dorsal root ganglion neurons induced significant impairment in scratching behaviors in response to acute histamine-dependent and chronic dry skin itch models. Furthermore, FGF13 selectively regulated the function of the TRPV1, but not the TRPA1 channel on Ca2+ imaging and electrophysiological recordings, as demonstrated by a significant reduction in neuronal excitability and current density induced by TRPV1 channel activation, whereas TRPA1 channel activation had no effect. Changes in channel currents were also verified in HEK cell lines. Subsequently, we observed that selective modulation of TRPV1 by FGF13 required its microtubule-stabilizing effect. Furthermore, in FGF13 knockout mice, only the overexpression of FGF13 with a tubulin-binding domain could rescue TRP channel function and the impaired itch behavior. Our findings reveal a novel mechanism by which FGF13 is involved in TRPV1-dependent itch transduction and provide valuable clues for alleviating pathological itch syndrome.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Ratones Noqueados , Microtúbulos , Prurito , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Prurito/metabolismo , Prurito/genética , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Humanos , Células HEK293 , Microtúbulos/metabolismo , Ganglios Espinales/metabolismo , Masculino , Ratones Endogámicos C57BL , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética
3.
Biochem Pharmacol ; 225: 116329, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821375

RESUMEN

Calcium signaling abnormality in cardiomyocytes, as a key mechanism, is closely associated with developing heart failure. Fibroblast growth factor 13 (FGF13) demonstrates important regulatory roles in the heart, but its association with cardiac calcium signaling in heart failure remains unknown. This study aimed to investigate the role and mechanism of FGF13 on calcium mishandling in heart failure. Mice underwent transaortic constriction to establish a heart failure model, which showed decreased ejection fraction, fractional shortening, and contractility. FGF13 deficiency alleviated cardiac dysfunction. Heart failure reduces calcium transients in cardiomyocytes, which were alleviated by FGF13 deficiency. Meanwhile, FGF13 deficiency restored decreased Cav1.2 and Serca2α expression and activity in heart failure. Furthermore, FGF13 interacted with microtubules in the heart, and FGF13 deficiency inhibited the increase of microtubule stability during heart failure. Finally, in isoproterenol-stimulated FGF13 knockdown neonatal rat ventricular myocytes (NRVMs), wildtype FGF13 overexpression, but not FGF13 mutant, which lost the binding site of microtubules, promoted calcium transient abnormality aggravation and Cav1.2 downregulation compared with FGF13 knockdown group. Generally, FGF13 deficiency improves abnormal calcium signaling by inhibiting the increased microtubule stability in heart failure, indicating the important role of FGF13 in cardiac calcium homeostasis and providing new avenues for heart failure prevention and treatment.

4.
Genes Genomics ; 46(2): 241-252, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37747640

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies and frequent cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) play regulatory roles and serve as biomarkers of multiple cancers, including ESCC. Our previous studies have confirmed that lncRNA Kinectin 1 antisense RNA 1 (KTN1-AS1) is highly expressed in ESCC and exerts oncogene function through RBBP4/HDAC1 complex. OBJECTIVE: Our present study focused on exploring a novel molecular mechanism of KTN1-AS1 in ESCC. METHODS: In this study, qRT-PCR assay, Western blot assay, Luciferase reporter assay, and RNA immunoprecipitation assay were conducted. RESULTS: We found that KTN1-AS1 could bind to miR-885-5p in ESCC cells, and miR-885-5p was low expressed in ESCC. Overexpression of miR-885-5p inhibited esophageal cancer cells proliferation and invasion in vitro. Mechanistic analysis demonstrated that miR-885-5p specifically targeted striatin 3 (STRN3), and KTN1-AS1/miR-885-5p promoted the EMT process by Hippo pathway in STRN3/YAP1 dependent manner. CONCLUSION: To sum up, KTN1-AS1 facilitates ESCC progression by acting as a ceRNA for miR-885-5p to regulate STRN3 expression and the Hippo pathway, and KTN1-AS1 maybe used as a promising therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , ARN sin Sentido/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Esofágicas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Autoantígenos , Proteínas de Unión a Calmodulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...