Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Lung Cancer Res ; 11(10): 2094-2110, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36386459

RESUMEN

Background: Differentiating between benign and malignant pulmonary nodules is a diagnostic challenge, and inaccurate detection can result in unnecessary invasive procedures. Cell-free DNA (cfDNA) has been successfully utilized to detect various solid tumors. In this study, we developed a genome-wide approach to explore the characteristics of cfDNA sequencing reads obtained by low-depth whole-genome sequencing (LD-WGS) to diagnose pulmonary nodules. Methods: LD-WGS was performed on cfDNA extracted from 420 plasma samples from individuals with pulmonary nodules that were no more than 30 mm in diameter, as determined by computed tomography (CT). The sequencing read distribution patterns of cfDNA were analyzed and used to establish a model for distinguishing benign from malignant pulmonary nodules. Results: We proposed the concept of weighted reads distribution difference (WRDD) based on the copy number alterations (CNAs) of cfDNA to construct a benign and malignant diagnostic (BEMAD) algorithm model. In a training cohort of 360 plasma samples, the model achieved an average area under the receiver operating characteristic (ROC) curve (AUC) value of 0.84 in 10-fold cross-validation. The model was validated in an independent cohort of 60 plasma samples, obtaining an AUC value of 0.87. The BEMAD model could distinguish benign from malignant nodules at a sensitivity of 74% and a specificity of 86%. Furthermore, analysis of the critical features of the cfDNA using the BEMAD model identified repeat regions that were associated with microsatellite instability, which is an important indicator of tumorigenesis. Conclusions: This study provides a novel non-invasive diagnostic approach to discriminate between benign and malignant pulmonary nodules to avoid unnecessary invasive procedures.

2.
Front Plant Sci ; 12: 637009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249031

RESUMEN

Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley's line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea.

4.
Ecol Evol ; 10(14): 7349-7363, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760533

RESUMEN

Phylogeographic forces driving evolution of sea-dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo-West Pacific region and identify the phylogeographic factors influencing its present-day distribution. Analysis of five chloroplast DNA fragments' sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo-Malesia and Australasia was not so prominent. Long-distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.

5.
Gut ; 69(5): 877-887, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31462556

RESUMEN

OBJECTIVE: Insulinomas and non-functional pancreatic neuroendocrine tumours (NF-PanNETs) have distinctive clinical presentations but share similar pathological features. Their genetic bases have not been comprehensively compared. Herein, we used whole-genome/whole-exome sequencing (WGS/WES) to identify genetic differences between insulinomas and NF-PanNETs. DESIGN: The mutational profiles and copy-number variation (CNV) patterns of 211 PanNETs, including 84 insulinomas and 127 NF-PanNETs, were obtained from WGS/WES data provided by Peking Union Medical College Hospital and the International Cancer Genome Consortium. Insulinoma RNA sequencing and immunohistochemistry data were assayed. RESULTS: PanNETs were categorised based on CNV patterns: amplification, copy neutral and deletion. Insulinomas had CNV amplifications and copy neutral and lacked CNV deletions. CNV-neutral insulinomas exhibited an elevated rate of YY1 mutations. In contrast, NF-PanNETs had all three CNV patterns, and NF-PanNETs with CNV deletions had a high rate of loss-of-function mutations of tumour suppressor genes. NF-PanNETs with CNV alterations (amplification and deletion) had an elevated risk of relapse, and additional DAXX/ATRX mutations could predict an increased relapse risk in the first 2-year period. CONCLUSION: These WGS/WES data allowed a comprehensive assessment of genetic differences between insulinomas and NF-PanNETs, reclassifying these tumours into novel molecular subtypes. We also proposed a novel relapse risk stratification system using CNV patterns and DAXX/ATRX mutations.


Asunto(s)
Dosificación de Gen/genética , Insulinoma/genética , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Secuenciación Completa del Genoma/métodos , Enfermedades Asintomáticas/clasificación , Biopsia con Aguja , Diagnóstico Diferencial , Femenino , Humanos , Inmunohistoquímica , Insulinoma/clasificación , Masculino , Mutación , Tumores Neuroendocrinos/clasificación , Proteínas Nucleares/genética , Neoplasias Pancreáticas/clasificación , Medición de Riesgo , Secuenciación del Exoma
6.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480292

RESUMEN

The distinct molecular subtypes of lung cancer are defined by monogenic biomarkers, such as EGFR, KRAS, and ALK rearrangement. Tumor mutation burden (TMB) is a potential biomarker for response to immunotherapy, which is one of the measures for genomic instability. The molecular subtyping based on TMB has not been well characterized in lung adenocarcinomas in the Chinese population. Here we performed molecular subtyping based on TMB with the published whole exome sequencing data of 101 lung adenocarcinomas and compared the different features of the classified subtypes, including clinical features, somatic driver genes, and mutational signatures. We found that patients with lower TMB have a longer disease-free survival, and higher TMB is associated with smoking and aging. Analysis of somatic driver genes and mutational signatures demonstrates a significant association between somatic RYR2 mutations and the subtype with higher TMB. Molecular subtyping based on TMB is a potential prognostic marker for lung adenocarcinoma. Signature 4 and the mutation of RYR2 are highlighted in the TMB-High group. The mutation of RYR2 is a significant biomarker associated with high TMB in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/clasificación , Adenocarcinoma del Pulmón/genética , Mutación/genética , Análisis por Conglomerados , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Sci Rep ; 6: 29486, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27380895

RESUMEN

Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia.


Asunto(s)
Genética de Población , Magnoliopsida/genética , Teorema de Bayes , ADN Mitocondrial/genética , Evolución Molecular , Flujo Genético , Ligamiento Genético , Geografía , Calentamiento Global , Haplotipos , Océano Índico , Océano Pacífico , Filogenia , Polimorfismo de Nucleótido Simple , Dinámica Poblacional
8.
Appl Plant Sci ; 3(3)2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25798345

RESUMEN

PREMISE OF THE STUDY: Microsatellite markers were developed for Carallia brachiata to assess the genetic diversity and structure of this terrestrial species of the Rhizophoraceae. METHODS AND RESULTS: Based on transcriptome data for C. brachiata, 40 primer pairs were initially designed and tested, of which 18 were successfully amplified and 11 were polymorphic. For these microsatellites, one to three alleles per locus were identified. The observed and expected heterozygosities ranged from 0 to 0.727 and 0 to 0.520, respectively. In addition, all primers were successfully amplified in two congeners: C. pectinifolia and C. garciniifolia. CONCLUSIONS: The microsatellite markers described here will be useful in population genetic studies of C. brachiata and related species, suggesting that developing microsatellite markers from next-generation sequencing data can be efficient for genetic studies across this genus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...