Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 180: 106715, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39276587

RESUMEN

Knowledge graph (KG) noise correction aims to select suitable candidates to correct the noises in KGs. Most of the existing studies have limited performance in repairing the noisy triple that contains more than one incorrect entity or relation, which significantly constrains their implementation in real-world KGs. To overcome this challenge, we propose a novel end-to-end model (BGAT-CCRF) that achieves better noise correction results. Specifically, we construct a balanced-based graph attention model (BGAT) to learn the features of nodes in triples' neighborhoods and capture the correlation between nodes based on their position and frequency. Additionally, we design a constrained conditional random field model (CCRF) to select suitable candidates guided by three constraints for correcting one or more noises in the triple. In this way, BGAT-CCRF can select multiple candidates from a smaller domain to repair multiple noises in triples simultaneously, rather than selecting candidates from the whole KG to repair noisy triples as traditional methods do, which can only repair one noise in the triple at a time. The effectiveness of BGAT-CCRF is validated by the KG noise correction experiment. Compared with the state-of-the-art models, BGAT-CCRF improves the fMRR metric by 3.58% on the FB15K dataset. Hence, it has the potential to facilitate the implementation of KGs in the real world.

2.
Comput Intell Neurosci ; 2021: 2878189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603428

RESUMEN

The purpose of knowledge graph entity disambiguation is to match the ambiguous entities to the corresponding entities in the knowledge graph. Current entity ambiguity elimination methods usually use the context information of the entity and its attributes to obtain the mention embedding vector, compare it with the candidate entity embedding vector for similarity, and perform entity matching through the similarity. The disadvantage of this type of method is that it ignores the structural characteristics of the knowledge graph where the entity is located, that is, the connection between the entity and the entity, and therefore cannot obtain the global semantic features of the entity. To improve the Precision and Recall of entity disambiguation problems, we propose the EDEGE (Entity Disambiguation based on Entity and Graph Embedding) method, which utilizes the semantic embedding vector of entity relationship and the embedding vector of subgraph structure feature. EDEGE first trains the semantic vector of the entity relationship, then trains the graph structure vector of the subgraph where the entity is located, and balances the weights of these two vectors through the entity similarity function. Finally, the balanced vector is input into the graph neural network, and the matching between the entities is output to achieve entity disambiguation. Extensive experimental results proved the effectiveness of the proposed method. Among them, on the ACE2004 data set, the Precision, Recall, and F1 values of EDEGE are 9.2%, 7%, and 11.2% higher than baseline methods.


Asunto(s)
Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas , Conocimiento , Bases del Conocimiento , Semántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA