Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37399189

RESUMEN

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilación , Biomasa , Biocombustibles/análisis , Plantas/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo
2.
New Phytol ; 239(6): 2248-2264, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488708

RESUMEN

Plant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development. Overexpression of PtrXB38 in Populus led to significant increases in callusing and formation of both stem-born roots and base-born adventitious roots. Omics studies revealed that genes and proteins controlling auxin transport and signaling were involved in PtrXB38-mediated adventitious root formation. Protein-protein interaction assays indicated that PtrXB38 interacts with components of endosomal sorting complexes required for transport machinery, implying that PtrXB38-regulated root development may be mediated by regulating endocytosis pathway. Taken together, this work identified a crucial root development regulator and sheds light on the discovery of other plant developmental regulators through combining eQTL mapping and omics approaches.


Asunto(s)
Populus , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo
3.
Cells ; 12(7)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37048154

RESUMEN

Mutualistic association can improve a plant's health and productivity. G-type lectin receptor-like kinase (PtLecRLK1) is a susceptibility factor in Populus trichocarpa that permits root colonization by a beneficial fungus, Laccaria bicolor. Engineering PtLecRLK1 also permits L. bicolor root colonization in non-host plants similar to Populus trichocarpa. The intracellular signaling reprogramed by PtLecRLK1 upon recognition of L. bicolor to allow for the development and maintenance of symbiosis is yet to be determined. In this study, phosphoproteomics was utilized to identify phosphorylation-based relevant signaling pathways associated with PtLecRLK1 recognition of L. bicolor in transgenic switchgrass roots. Our finding shows that PtLecRLK1 in transgenic plants modifies the chitin-triggered plant defense and MAPK signaling along with a significant adjustment in phytohormone signaling, ROS balance, endocytosis, cytoskeleton movement, and proteasomal degradation in order to facilitate the establishment and maintenance of L. bicolor colonization. Moreover, protein-protein interaction data implicate a cGMP-dependent protein kinase as a potential substrate of PtLecRLK1.


Asunto(s)
Micorrizas , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Lectinas/metabolismo , Simbiosis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
4.
Nat Commun ; 13(1): 3051, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650185

RESUMEN

Seed protein, oil content and yield are highly correlated agronomically important traits that essentially account for the economic value of soybean. The underlying molecular mechanisms and selection of these correlated seed traits during soybean domestication are, however, less known. Here, we demonstrate that a CCT gene, POWR1, underlies a large-effect protein/oil QTL. A causative TE insertion truncates its CCT domain and substantially increases seed oil content, weight, and yield while decreasing protein content. POWR1 pleiotropically controls these traits likely through regulating seed nutrient transport and lipid metabolism genes. POWR1 is also a domestication gene. We hypothesize that the TE insertion allele is exclusively fixed in cultivated soybean due to selection for larger seeds during domestication, which significantly contributes to shaping soybean with increased yield/seed weight/oil but reduced protein content. This study provides insights into soybean domestication and is significant in improving seed quality and yield in soybean and other crop species.


Asunto(s)
Domesticación , Glycine max , Alelos , Fenotipo , Semillas/genética , Semillas/metabolismo , Glycine max/metabolismo
5.
Talanta ; 243: 123323, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247818

RESUMEN

Herein, based on a terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly-T-templated-copper nanoparticles (poly T-CuNPs) strategy, a simple, universal and label-free fluorescent biosensor for the detection of miRNA was constructed by employing graphene oxide (GO) and DNase I. In this strategy, GO and DNase I were used as a switch and amplifier of the signal generation pathway, respectively, and the fluorescence of poly T-CuNPs was used as the signal output. In the presence of target miRNA, the DNA dissociated from the GO surface by forming a miRNA/DNA duplex and was degraded by DNase I. The short oligos with 3'-OH, the product of DNase I degradation, could be recognized by the TdT and added to a long poly-T tail. Finally, the fluorescence signal was output through the synthesis of poly T-CuNPs. As a proof of concept, let-7a was analyzed. The method showed good sensitivity and selectivity with a linear response in the 50 pM-10,000 pM let-7a concentration range and a 30 pM limit of detection (LOD = 30 pM, R2 = 0.9954, the relative standard deviation were 2.79%-5.30%). It was also successfully applied to the determination of miRNA in spiked human serum samples. It showed good linearity in the range of 500-10000 pM (R2 = 0.9969, the relative standard deviation were 1.61%-3.85%). Moreover, both the adsorption of GO and the degradation of DNase I are DNA sequence-independent; thus, this method can be applied to the detection of any miRNA simply by changing the assisted-DNA sequence.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Adsorción , Técnicas Biosensibles/métodos , Cobre , Colorantes Fluorescentes , Grafito , Humanos , Límite de Detección , Timina
6.
Plant Biotechnol J ; 19(12): 2454-2468, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272801

RESUMEN

Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.


Asunto(s)
Panicum , Lectinas , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteómica
7.
Front Plant Sci ; 11: 596301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362827

RESUMEN

Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.

8.
Analyst ; 145(15): 5194-5199, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32555788

RESUMEN

MicroRNAs (miRNAs) have been shown to be promising biomarkers for disease diagnostics and therapeutics. However, the rapid, low-cost, sensitive, and selective detection of miRNAs remains a challenge because of their characters of small size, vulnerability to degradation, low abundance, and sequence similarity. Herein, we describe an enzyme-free amplification platform, consisting of a catalytic hairpin assembly (CHA) and DNA-templated silver nanoclusters (DNA/AgNCs), for miRNA analysis. In this work, two DNA hairpins (H1 and H2) were first designed for target miR-21-induced CHA, and then the fluorescence of DNA/AgNCs was quenched by BHQ1 to construct an activatable probe (AP). In the presence of target miR-21, hairpin H1 was opened by miR-21 through a hybridization reaction, and hairpin H2 was then opened by H1. During this process, miR-21 was released from H1 and participated in the next round of hybridization, triggering the CHA cycle reaction. The obtained H1-H2 products with sticky ends could react with the AP, forcing BHQ1 away from the DNA/AgNCs and thus causing the fluorescence recovery of the DNA/AgNCs. The assay for miR-21 detection demonstrated an excellent linear response to concentrations varying from 200 pM to 20 nM with the detection limit of 200 pM. The simple and cost-effective strategy holds great potential for application in biomedical research and clinical diagnostics.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Catálisis , ADN/genética , Límite de Detección , MicroARNs/genética , Plata , Espectrometría de Fluorescencia
9.
Genes (Basel) ; 10(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817452

RESUMEN

Phytohormones regulate the mutualistic symbiotic interaction between legumes and rhizobia, nitrogen-fixing soil bacteria, notably by controlling the formation of the infection thread in the root hair (RH). At the cellular level, the formation of the infection thread is promoted by the translocation of plasma membrane microdomains at the tip of the RH. We hypothesize that phytohormones regulate the translocation of plasma membrane microdomains to regulate infection thread formation. Accordingly, we treated with hormone and hormone inhibitors transgenic soybean roots expressing fusions between the Green Fluorescent Protein (GFP) and GmFWL1 or GmFLOT2/4, two microdomain-associated proteins translocated at the tip of the soybean RH in response to rhizobia. Auxin and cytokinin treatments are sufficient to trigger or inhibit the translocation of GmFWL1 and GmFLOT2/4 to the RH tip independently of the presence of rhizobia, respectively. Unexpectedly, the application of salicylic acid, a phytohormone regulating the plant defense system, also promotes the translocation of GmFWL1 and GmFLOT2/4 to the RH tip regardless of the presence of rhizobia. These results suggest that phytohormones are playing a central role in controlling the early stages of rhizobia infection by regulating the translocation of plasma membrane microdomains. They also support the concept of crosstalk of phytohormones to control nodulation.


Asunto(s)
Glycine max , Microdominios de Membrana , Reguladores del Crecimiento de las Plantas , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas , Citocininas/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Simbiosis
10.
Theranostics ; 8(15): 4062-4071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30128036

RESUMEN

Activatable aptamers have emerged as promising molecular tools for cancer theranostics, but reported monovalent activatable aptamer probes remain problematic due to their unsatisfactory affinity and poor stability. To address this problem, we designed a novel theranostic strategy of DNA nanotriangle-scaffolded multivalent split activatable aptamer probe (NTri-SAAP), which combines advantages of programmable self-assembly, multivalent effect and target-activatable architecture. Methods: NTri-SAAP was assembled by conjugating multiple split activatable aptamer probes (SAAPs) on a planar DNA nanotriangle scaffold (NTri). Leukemia CCRF-CEM cell line was used as the model to investigate its detection, imaging and therapeutic effect both in vitro and in vivo. Binding affinity and stability were evaluated using flow cytometry and nuclease resistance assays. Results: In the free state, NTri-SAAP was stable with quenched signals and loaded doxorubicin, while upon binding to target cells, it underwent a conformation change with fluorescence activation and drug release after internalization. Compared to monovalent SAAP, NTri-SAAP displayed greatly-improved target binding affinity, ultralow nonspecific background and robust stability in harsh conditions, thus affording contrast-enhanced tumor imaging within an extended time window of 8 h. Additionally, NTri-SAAP increased doxorubicin loading capacity by ~5 times, which further realized a high anti-tumor efficacy in vivo with 81.95% inhibition but no obvious body weight loss. Conclusion: These results strongly suggest that the biocompatible NTri-SAAP strategy would provide a promising platform for precise and high-quality theranostics.


Asunto(s)
Aptámeros de Nucleótidos/administración & dosificación , Leucemia/diagnóstico , Leucemia/tratamiento farmacológico , Técnicas de Diagnóstico Molecular/métodos , Terapia Molecular Dirigida/métodos , Nanopartículas/administración & dosificación , Nanomedicina Teranóstica/métodos , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Humanos , Ratones Desnudos , Modelos Teóricos , Resultado del Tratamiento
11.
Analyst ; 143(9): 2008-2011, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29632901

RESUMEN

We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 µm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.

12.
Talanta ; 182: 225-229, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29501145

RESUMEN

A comprehensive two-dimensional liquid chromatography (LCxLC) system consisting of twelve columns in the second dimension was developed for comprehensive analysis of intact proteins in complex biological samples. The system consisted of an ion-exchange column in the first dimension and the twelve reverse-phase columns in the second dimension; all thirteen columns were monolithic and prepared inside 250 µm i.d. capillaries. These columns were assembled together through the use of three valves and an innovative configuration. The effluent from the first dimension was continuously fractionated and sequentially transferred into the twelve second-dimension columns, while the second-dimension separations were carried out in a series of batches (six columns per batch). This LCxLC system was tested first using standard proteins followed by real-world samples from E. coli. Baseline separation was observed for eleven standard proteins and hundreds of peaks were observed for the real-world sample analysis. Two-dimensional liquid chromatography, often considered as an effective tool for mapping proteins, is seen as laborious and time-consuming when configured offline. Our online LCxLC system with increased second-dimension columns promises to provide a solution to overcome these hindrances.


Asunto(s)
Cromatografía por Intercambio Iónico/instrumentación , Cromatografía de Fase Inversa/instrumentación , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/química , Cromatografía por Intercambio Iónico/métodos , Cromatografía de Fase Inversa/métodos , Mezclas Complejas/química , Poliestirenos/química , Compuestos de Vinilo/química
13.
Anal Chim Acta ; 1010: 54-61, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29447671

RESUMEN

Poly(thymine)-hosted copper nanoparticles (poly T-CuNPs) have emerged as a promising label-free fluorophore for bioanalysis, but its application in RNA-related studies is still rarely explored. Herein, by utilizing duplex-specific nuclease (DSN) as a convertor to integrate target recycling mechanism into terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly T-CuNPs platform, a specific and sensitive method for microRNA detection has been developed. In this strategy, a 3'-phosphorylated DNA probe can hybridize with target RNA and then be cut by DSN to produce 3'-hydroxylated fragments, which can be further tailed by TdT with superlong poly T for fluorescent CuNPs synthesis. As proof of concept, an analysis of let-7d was achieved with a good linear correlation between 20 and 1000 pM (R2 = 0.9965) and a detection limit of 20 pM. Moreover, both homologous and heterologous microRNAs were also effectively discriminated. This strategy might pave a brand-new way for designing label-free and sensitive microRNA assays.


Asunto(s)
Cobre/química , Nanopartículas del Metal/análisis , MicroARNs/análisis , Poli T/química , Hibridación de Ácido Nucleico , Tamaño de la Partícula , Propiedades de Superficie
14.
Chem Commun (Camb) ; 54(9): 1089-1092, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29328343

RESUMEN

A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.


Asunto(s)
Núcleo Celular/metabolismo , ADN/análisis , ADN/química , Fluorescencia , Mediciones Luminiscentes , Nanopartículas del Metal/química , Plata/química , Línea Celular , Supervivencia Celular , Color , Humanos , Coloración y Etiquetado , Telómero/química , Telómero/genética , Fijación del Tejido
15.
Anal Chem ; 90(3): 1889-1896, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29299923

RESUMEN

Intracellular pH (pHi) is an important parameter associated with cellular behaviors and pathological conditions. Sensing pHi and monitoring its changes are essential but challenging due to the lack of high-sensitive probes. Herein, a ratiometric fluorescent probe with ultra pH-sensitivity is developed based on hairpin-contained i-motif strand (I-strand, labeled with Rhodamine Green and BHQ2 at two termini) and complementary strand (C-strand, labeled with Rhodamine Red at its 5'-end). At neutral pH, both I-strand and C-strand hybridize into a rigid duplex (I-C), which holds the Rhodamine Red and the BHQ2 in close proximity. As a result, the fluorescence emission (F597 nm) of the Rhodamine Red is strongly suppressed, while the Rhodamine Green (F542 nm) is in a "signal on" state. However, the slightly acidic pH enforced the I-strand to form an intramolecular i-motif and initiated the dehybridization of I-C duplex, leading to Rhodamine Red in a "signal on" state and a decreased fluorescence of Rhodamine Green. The ratio (F542 nm/F597 nm) can be used as a signal for pH sensing. Due to the rational internal hairpin design of I-C duplex probe, almost 70-fold change in the ratio was observed in the physiological pH range (6.50-7.40). This probe possesses efficient stability, fast response, and reversible pH measurement capabilities. Furthermore, intracellular application of the ratiometric probe was demonstrated on the example of SMMC-7721 cells. With different recognition elements in engineering of i-motif based platforms, the design might hold great potential to become a versatile strategy for intracellular pH sensing.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Colorantes Fluorescentes/química , Rodaminas/química , Línea Celular Tumoral , Citoplasma/química , Humanos , Concentración de Iones de Hidrógeno , Conformación de Ácido Nucleico , Imagen Óptica/métodos , Espectrometría de Fluorescencia/métodos
16.
Anal Bioanal Chem ; 410(5): 1427-1434, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29279984

RESUMEN

A novel and adjustable lamp based on competitive interaction among dsDNA-SYBR Green I (SGI), ion quencher, and analyte was designed for bioanalysis. The "filament" and switch of the lamp could be customized by employing different dsDNA and ion quencher. The poly(AT/TA) dsDNA was successfully screened as the most effective filament of the lamp. Two common ions, Hg2+ and Fe3+, were selected as the model switch, and the corresponding ligand molecules cysteine (Cys) and pyrophosphate ions (PPi) were selected as the targets. When the fluorescence-quenched dsDNA/SGI-ion complex was introduced into a target-containing system, ions could be bound by competitive molecules and separate from the complex, thereby lighting the lamp. However, no light was observed if the biomolecule could not snatch the metal ions from the complex. Under the optimal conditions, sensitive and selective detection of Cys and PPi was achieved by the lamp, with practical applications in fetal bovine serum and human urine. This ion quencher regulated lamp for fluorescent bioassays is simple in design, fast in operation, and is more convenient than other methods. Significantly, as many molecules could form stable complexes with metal ions selectively, this ion quencher operated lamp has potential for the detection of a wide spectrum of analytes. Graphical abstract A novel and adjustable lamp on the basis of competitive interaction among dsDNA-SYBR Green I, ions quencher and analyte was designed for bioanalysis. The filament and switch of lamp could be customized by employing different dsDNA and ions quencher.


Asunto(s)
Colorantes Fluorescentes/química , Hierro/química , Mercurio/química , Benzotiazoles , Bioensayo/métodos , Cisteína/análisis , ADN/química , Diaminas , Fluorescencia , Iones , Compuestos Orgánicos/química , Quinolinas
17.
Genes (Basel) ; 8(12)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29182547

RESUMEN

The establishment of the symbiosis between legumes and nitrogen-fixing rhizobia is finely regulated at the transcriptional, posttranscriptional and posttranslational levels. Argonaute5 (AGO5), a protein involved in RNA silencing, can bind both viral RNAs and microRNAs to control plant-microbe interactions and plant physiology. For instance, AGO5 regulates the systemic resistance of Arabidopsis against Potato Virus X as well as the pigmentation of soybean (Glycine max) seeds. Here, we show that AGO5 is also playing a central role in legume nodulation based on its preferential expression in common bean (Phaseolus vulgaris) and soybean roots and nodules. We also report that the expression of AGO5 is induced after 1 h of inoculation with rhizobia. Down-regulation of AGO5 gene in P. vulgaris and G. max causes diminished root hair curling, reduces nodule formation and interferes with the induction of three critical symbiotic genes: Nuclear Factor Y-B (NF-YB), Nodule Inception (NIN) and Flotillin2 (FLOT2). Our findings provide evidence that the common bean and soybean AGO5 genes play an essential role in the establishment of the symbiosis with rhizobia.

18.
Plant Signal Behav ; 12(10): e1365215, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28816608

RESUMEN

Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.


Asunto(s)
Membrana Celular/metabolismo , Fabaceae/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Membrana Celular/genética , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunoprecipitación , Microdominios de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/genética
19.
Plant Mol Biol ; 94(6): 641-655, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28687904

RESUMEN

KEY MESSAGE: A comparative transcriptomic and genomic analysis between Arabidopsis thaliana and Glycine max root hair genes reveals the evolution of the expression of plant genes after speciation and whole genome duplication. Our understanding of the conservation and divergence of the expression patterns of genes between plant species is limited by the quality of the genomic and transcriptomic resources available. Specifically, the transcriptomes generated from plant organs are the reflection of the contribution of the different cell types composing the samples weighted by their relative abundances in the sample. These contributions can vary between plant species leading to the generation of datasets which are difficult to compare. To gain a deeper understanding of the evolution of gene transcription in and between plant species, we performed a comparative transcriptomic and genomic analysis at the level of one single plant cell type, the root hair cell, and between two model plants: Arabidopsis (Arabidopsis thaliana) and soybean (Glycine max). These two species, which diverged 90 million years ago, were selected as models based on the large amount of genomic and root hair transcriptomic information currently available. Our analysis revealed in detail the transcriptional divergence and conservation between soybean paralogs (i.e., the soybean genome is the product of two successive whole genome duplications) and between Arabidopsis and soybean orthologs in this single plant cell type. Taking advantage of this evolutionary study, we combined bioinformatics, molecular, cellular and microscopic tools to characterize plant promoter sequences and the discovery of two root hair regulatory elements (RHE1 and RHE2) consistently and specifically active in plant root hair cells.


Asunto(s)
Arabidopsis/genética , Glycine max/genética , Células Vegetales/fisiología , Raíces de Plantas/citología , Regiones Promotoras Genéticas , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Glycine max/citología
20.
Anal Chem ; 89(12): 6637-6644, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28492073

RESUMEN

Development of smart DNA nanostructures is of great value in cancer studies. Here, by integrating rolling circle amplification (RCA) into split aptamer design, a novel strategy of polyvalent and thermosensitive DNA nanoensembles was first proposed for cancer cell detection and manipulation. In this strategy, a long nanosolo ssDNA with repeated Split-b and Poly T regions was generated through RCA. Split-b supplied polyvalent binding sites while Poly T supported signal output by hybridizing with fluorophore-labeled poly A. After addition of Split-a, nanoensembles formed on the cell surface due to target-induced assembly of Split-a/Split-b from the free state to the recognition structure, and on the basis of the thermosensitivity of split aptamer, nanoensembles were controlled reversibly by changing temperatures. As proof of concept, split ZY11 against SMMC-7721 cancer was used to construct nanoensembles. Compared with monovalent split aptamer, nanoensembles were demonstrated to have a much stronger interaction with target cells, thus realizing an ∼2.8-time increase in signal-to-background ratio (SBR). Moreover, nanoensembles extended the tolerance range of target binding from 4 °C to room temperature and speeded recognition thus achieving almost 50% binding in 1 min. Then, nanoensembles were successfully applied to detect 7721 cells in serum and mixed cell samples. By utilizing microplate well surface as the model, temperature-controlled catch/release of target cells was also realized with nanoensembles, even under unfriendly conditions for monovalent split aptamer. The RCA-mediated aptameric nanoensembles strategy not only solved the problem of split aptamer in inefficient binding but also paved a brand new way for developing polyvalent and intelligent nanomaterials.


Asunto(s)
Separación Celular/métodos , ADN de Cadena Simple/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Nanoestructuras/química , Temperatura , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...