Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(3): 103238, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096492

RESUMEN

Here, we present a protocol for small interfering RNA (siRNA)-mediated U1 small nuclear RNA (snRNA) knockdown using fluorinated α-helical polypeptide in macrophages and mouse lungs, providing a dependable approach to silence U1 snRNA in vitro and in vivo. We describe steps for preparing P7F7/siRNA polyplexes and silencing U1 snRNA with P7F7/siRNA polyplexes in macrophages and mouse lungs. Knockdown efficiency is validated through reverse-transcription quantitative real-time PCR analysis. This protocol is applicable for studying the physiological or pathophysiological function of U1 snRNA. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.

2.
J Bone Miner Res ; 39(8): 1132-1146, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38874138

RESUMEN

Type I interferons (IFN-I) are pleiotropic factors endowed with multiple activities that play important roles in innate and adaptive immunity. Although many studies indicate that IFN-I inducers exert favorable effects on broad-spectrum antivirus, immunomodulation, and anti-tumor activities by inducing endogenous IFN-I and IFN-stimulated genes, their function in bone homeostasis still needs further exploration. Here, our study demonstrates 2 distinct IFN-I inducers, diABZI and poly(I:C), as potential therapeutics to alleviate osteolysis and osteoporosis. First, IFN-I inducers suppress the genes that control osteoclast (OC) differentiation and activity in vitro. Moreover, diABZI alleviates bone loss in Ti particle-induced osteolysis and ovariectomized -induced osteoporosis in vivo by inhibiting OC differentiation and function. In addition, the inhibitory effects of IFN-I inducers on OC differentiation are not observed in macrophages derived from Ifnar1-/-mice, which indicate that the suppressive effect of IFN-I inducers on OC is IFNAR-dependent. Mechanistically, RNAi-mediated silencing of IRF7 and IFIT3 in OC precursors impairs the suppressive effect of the IFN-I inducers on OC differentiation. Taken together, these results demonstrate that IFN-I inducers play a protective role in bone turnover by limiting osteoclastogenesis and bone resorption through the induction of OC-specific mediators via the IFN-I signaling pathway.


OCs are responsible for bone resorption, and their excessive differentiation and enhanced activity will lead to bone resorption diseases such as osteoporosis and osteolysis. Here, our study demonstrates 2 distinct IFN-I inducers, diABZI and poly(I:C), as potential therapeutics to alleviate osteolysis and osteoporosis. IFN-I inducers suppress OC differentiation, and particularly diABZI alleviates bone loss in osteolysis and osteoporosis mouse models. Taken together, IFN-I inducers play a protective role in bone turnover by limiting osteoclastogenesis and bone resorption through the induction of OC-specific mediators via the IFN-I signaling pathway. Our in-depth and comprehensive discovery of the IFN-I inducer would provide new insight into OC biology and therapeutic targets for osteoclastic bone resorption diseases.


Asunto(s)
Resorción Ósea , Diferenciación Celular , Factor 7 Regulador del Interferón , Osteoclastos , Poli I-C , Animales , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Factor 7 Regulador del Interferón/metabolismo , Resorción Ósea/patología , Ratones , Poli I-C/farmacología , Diferenciación Celular/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Interferón Tipo I/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Receptor de Interferón alfa y beta/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Humanos , Osteólisis/patología , Osteólisis/metabolismo , Osteólisis/tratamiento farmacológico
3.
Cell Rep ; 43(3): 113945, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483900

RESUMEN

U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , ARN Nuclear Pequeño , Ubiquitinación , Proteínas de Motivos Tripartitos/metabolismo
4.
EMBO Rep ; 23(5): e53937, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35312140

RESUMEN

LincRNA-EPS is an important regulator in inflammation. However, the role of lincRNA-EPS in the host response against viral infection is unexplored. Here, we show that lincRNA-EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV-1. Overexpression of lincRNA-EPS facilitates viral infection, while deficiency of lincRNA-EPS protects the host against viral infection in vitro and in vivo. LincRNA-EPS-/- macrophages show elevated expression of antiviral interferon-stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN-ß, the key upstream inducer of these ISGs, is downregulated in lincRNA-EPS-/- macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA-EPS binds to PKR and antagonizes the viral RNA-PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN-I induction. LincRNA-EPS inhibits PKR-STAT1-ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA-EPS promoting the induction of PKR-STAT1-dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.


Asunto(s)
ARN Largo no Codificante , Antivirales , Inmunidad Innata , Interferón beta/genética , Interferones , ARN Largo no Codificante/genética , ARN Viral/metabolismo
5.
J Immunol ; 207(11): 2699-2709, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34750204

RESUMEN

IFN-γ-inducible protein 16 (IFI16) recognizes viral DNAs from both nucleus-replicating viruses and cytoplasm-replicating viruses. Isoform 2 of IFI16 (IFI16-iso2) with nuclear localization sequence (NLS) has been studied extensively as a well-known DNA sensor. However, the characteristics and functions of other IFI16 isoforms are almost unknown. Here, we find that IFI16-iso1, with exactly the same length as IFI16-iso2, lacks the NLS and locates in the cytoplasm. To distinguish the functions of IFI16-iso1 and IFI16-iso2, we have developed novel nuclear viral DNA mimics that can be recognized by the nuclear DNA sensors, including IFI16-iso2 and hnRNPA2B1. The hexanucleotide motif 5'-AGTGTT-3' DNA form of the nuclear localization sequence (DNLS) effectively drives cytoplasmic viral DNA nuclear translocation. These nuclear viral DNA mimics potently induce IFN-ß and antiviral IFN-stimulated genes in human A549 cells, HEK293T cells, and mouse macrophages. The subcellular location difference of IFI16 isoforms determines their differential functions in recognizing viral DNA and activating type I IFN-dependent antiviral immunity. IFI16-iso1 preferentially colocalizes with cytoplasmic HSV60mer and cytoplasm-replicating vaccinia virus (VACV), whereas IFI16-iso2 mainly colocalizes with nuclear HSV60-DNLS and nucleus-replicating HSV-1. Compared with IFI16-iso2, IFI16-iso1 induces more transcription of IFN-ß and IFN-stimulated genes, as well as stronger antiviral immunity upon HSV60mer transfection or VACV infection. IFI16-iso2, with the ability of nuclear-cytoplasmic shuttling, clears both invaded HSV type 1 and VACV significantly. However, IFI16-iso2 induces more type I IFN-dependent antiviral immunity than IFI16-iso1 upon HSV60-DNLS transfection or HSV type 1 infection. Our study has developed potent agonists for nuclear DNA sensors and also has demonstrated that IFI16 isoforms with cytoplasmic and nuclear locations play differential roles in innate immunity against DNA viruses.


Asunto(s)
Núcleo Celular/inmunología , Virus ADN/inmunología , Proteínas Nucleares/inmunología , Fosfoproteínas/inmunología , Células Cultivadas , Humanos , Isoformas de Proteínas/inmunología
6.
J Biol Chem ; 297(2): 100930, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216619

RESUMEN

Interferon-γ-inducible factor 16 (IFI16) triggers stimulator of interferon (IFN) genes (STING)-dependent type I IFN production during host antiviral immunity and facilitates p53-dependent apoptosis during suppressing tumorigenesis. We have previously reported that STING-mediated IFI16 degradation negatively regulates type I IFN production. However, it is unknown whether STING also suppresses IFI16/p53-dependent apoptosis via degradation of IFI16. Here, our results from flow cytometry apoptosis detection and immunoblot assays show that IFI16 and nutlin-3, a p53 pathway activator, synergistically induce apoptosis in U2OS and A549 cells. Protein kinase R-triggered phosphorylation of p53 at serine 392 is critical for the IFI16-p53-dependent apoptosis. However, overexpression of STING suppresses p53 serine 392 phosphorylation, p53 transcriptional activity, expression of p53 target genes, and p53-dependent mitochondrial depolarization and apoptosis. In summary, our current study demonstrates that STING-mediated IFI16 degradation negatively regulates IFI16-mediated p53-dependent apoptosis in osteosarcoma and non-small cell lung cancer cells, which suggests a protumorigenic role for STING in certain cancer types because of its potent ability to degrade upstream IFI16.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteína p53 Supresora de Tumor , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Proteínas de Drosophila , Humanos , Inmunidad Innata , Neoplasias Pulmonares , Fosforilación , Transducción de Señal
7.
Cell Rep ; 29(5): 1249-1260.e4, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665637

RESUMEN

γ-interferon-inducible protein-16 (IFI16), a key DNA sensor, triggers downstream STING-dependent type I interferon (IFN-I) production and antiviral immunity. However, it is still unclear how to negatively regulate IFI16 to avoid excessive IFN-I production and autoimmunity. Here, we find that STING directly interacts with IFI16 and facilitates IFI16 degradation via the ubiquitin-proteasome pathway by recruiting the E3 ligase TRIM21. The 1-pyrin region of IFI16 is responsible for the IFI16-STING interaction, and the first three lysines in the N-terminal region of IFI16 are the key sites that lead to STING-mediated IFI16 ubiquitination and degradation. Compared to wild-type IFI16, a higher level of viral DNA triggered IFN-ß and antiviral IFN-stimulated gene expression, and thus less HSV-1 infection, was observed in the cells transfected with IFI16-K3/4/6R, an IFI16 mutant that is resistant to degradation. STING-mediated negative feedback regulation of IFI16 restricts IFN-I overproduction during antiviral immunity to avoid autoimmune diseases.


Asunto(s)
Interferón beta/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteolisis , Línea Celular , Humanos , Lisina/metabolismo , Modelos Biológicos , Proteínas Nucleares/química , Fosfoproteínas/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Estabilidad Proteica , Ribonucleoproteínas/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Ubiquitina/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA