Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 2): 130739, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460639

RESUMEN

Extradiol dioxygenases (EDOs) catalyzing meta-cleavage of catecholic compounds promise an effective way to detoxify aromatic pollutants. This work reported a novel scenario to engineer our recently identified Type I EDO from Tcu3516 for a broader substrate scope and enhanced activity, which was based on 2,3-dihydroxybiphenyl (2,3-DHB)-liganded molecular docking of Tcu3516 and multiple sequence alignment with other 22 Type I EDOs. 11 non-conservative residues of Tcu3516 within 6 Å distance to the 2,3-DHB ligand center were selected as potential hotspots and subjected to semi-rational design using 6 catecholic analogues as substrates; the mutants V186L and V212N returned with progressive evolution in substrate scope and catalytic activity. Both mutants were combined with D285A for construction of double mutants and final triple mutant V186L/V212N/D285A. Except for 2,3-DHB (the mutant V186L/D285A gave the best catalytic performance), the triple mutant prevailed all other 5 catecholic compounds for their degradation; affording the catalytic efficiency kcat/Km value increase by 10-30 folds, protein Tm (structural rigidity) increase by 15 °C and the half-life time enhancement by 10 times compared to the wild type Tcu3516. The molecular dynamic simulation suggested that a stabler core and a more flexible entrance are likely accounting for enhanced catalytic activity and stability of enzymes.


Asunto(s)
Compuestos Orgánicos , Oxigenasas , Simulación del Acoplamiento Molecular , Oxigenasas/química , Alineación de Secuencia , Especificidad por Sustrato
2.
Talanta ; 170: 152-157, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501152

RESUMEN

Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br- for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50µL of 10% KBr for converting iAs to AsBr3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H2O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3µgkg-1. The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500µgkg-1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver.


Asunto(s)
Arsénico/análisis , Arsénico/aislamiento & purificación , Bromo/química , Halogenación , Algas Marinas/química , Extracción en Fase Sólida/métodos , Espectrometría de Fluorescencia/métodos , Métodos Analíticos de la Preparación de la Muestra , Arsénico/química , Ácido Clorhídrico/química , Límite de Detección
3.
Analyst ; 141(4): 1530-6, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26765360

RESUMEN

A novel method of ultraviolet vapour generation (UVG) coupled with atomic fluorescence spectrometry (AFS) was developed for the determination of ultratrace inorganic arsenic (iAs) in surface water. In this work, different ferric species were utilised for the first time as an enhancement reagent for the ultraviolet vapour generation of As(III), and their UVG efficiencies for volatile species of arsenic were investigated. 15 mg L(-1) of ferric chloride provided the greatest enhancement of approximately 10-fold, using 20% acetic acid combined with 4% formic acid with 30 s ultraviolet irradiation at 200 mL min(-1) Ar/H2 flow rate. Under the optimised conditions, the linear range was 1.0 µg L(-1)-100.0 µg L(-1), and the spiked recoveries were 92%-98%. The limit of detection was 0.05 µg L(-1) for iAs, and the relative standard deviation (RSD) value of the repeated measurements was 2.0% (n = 11). This method was successfully applied to the determination of ultratrace iAs in tap water, river water, and lake water samples using 0.2% H2SO4 (v : v) as the sample preserver. The obtained values for the water samples of certified reference materials (CRMs) including GSB-Z50004-200431, GBW08605 and GBW(E)080390 were all within the certified ranges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA