Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(6): e0268702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749445

RESUMEN

Analyzing the primary factors of potential evapotranspiration (PET) dynamic is fundamental to accurately estimating crop yield, evaluating environmental impacts, and understanding water and carbon cycles. Previous studies have focused on regionally average regional PET and its dominant factors. Spatial distributions of PET trends and their main causes have not been fully investigated. The Mann-Kendall test was used to determine the significance of long-term trends in PET and five meteorological factors (net radiation, wind speed, air temperature, vapor pressure deficit, relative humidity) at 56 meteorological stations in the Sichuan-Chongqing region from 1970 to 2020. Furthermore, this present study combining and quantitatively illustrated sensitivities and contributions of the meteorological factors to change in annual and seasonal PET. There was a positive trend in PET for approximately 58%, 68%, 38%, 73% and 73% of all surveyed stations at annual, spring, summer, autumn and winter, respectively. Contribution analysis exhibited that the driving factors for the PET variation varied spatially and seasonally. For stations with an upward PET trend, vapor pressure deficit was a dominant factor at all time scales. For stations with a downward PET trend, annual changes in PET mainly resulted from decreased wind speed, as did changes in spring, autumn and winter; decreasing net radiation was the dominant factor in summer. The positive effect of the vapor pressure deficit offset the negative effects of wind speed and net radiation, leading to the increasing PET in this area as a whole. Sensitivity analysis showed that net radiation and relative humidity were the two most sensitive variables for PET, followed by vapor pressure deficit in this study area. Results from the two mathematical approaches were not perfect match, because the change magnitude of the meteorological factors is also responsible for the effects of meteorological factors on PET variation to some extent. However, conducting sensitivity and contribution analysis in this study can avoid the uncertainties from using a single method and provides detailed and well-understood information for interpreting the influence of global climate change on the water cycle and improving local water management.


Asunto(s)
Cambio Climático , Viento , China , Monitoreo del Ambiente , Estaciones del Año , Temperatura , Agua
2.
PLoS One ; 16(11): e0259774, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793494

RESUMEN

The spatial and temporal characteristics of drought in Northeast China are investigated, using monthly meteorological data from 140 stations over the period 1970-2014. The study area was divided into three regions using hierarchical cluster analysis based on the precipitation and potential evapotranspiration data. The standardized precipitation evapotranspiration index (SPEI) was calculated for each station on 3-month and 12-month time scales. The Mann-Kendall (MK) trend test and Sen's slope method were applied to determine the trends for annual and seasonal SPEI time series. Periodic features of drought conditions in each sub-region and possible relationship with large-scale climate patterns were respectively identified using the continuous wavelet transform (CWT) and cross wavelet transform. The results show mitigations in spring and winter droughts and a significant increasing trend in autumn drought. On the annual scale, droughts became more severe and more intense in the western regions but were mitigated in the eastern region. CWT analysis showed that droughts in Northeast China occur predominantly in 14- to 42-month or 15- to 60-month cycles. Annual and seasonal droughts have 2- to 6-year cycles over the three defined regions. Cross wavelet analysis also shows that the statistically significant influence of large-scale climate patterns (the Southern Oscillation, the Atlantic Multidecadal Oscillation, the Arctic Oscillation, and the Polar-Eurasian Pattern) on drought in Northeast China is concentrated in a 16- to 50-month period, possibly causing drought variability in the different regions. The Southern Oscillation, Polar-Eurasia pattern, and Arctic Oscillation are significantly correlated with drought on decadal scales (around 120-month period). The findings of this study will provide valuable reference for regional drought mitigation and drought prediction.


Asunto(s)
Clima , Sequías , China , Análisis por Conglomerados
3.
PLoS One ; 16(2): e0247278, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606798

RESUMEN

Contrary to the common expectation that the reference evapotranspiration (ETo), which is an indicator of the atmospheric evaporation capability, increases in warming climate, the decline of the ETo has been reported worldwide, and this contradiction between the expected increasing ETo and the observed decreasing one is now termed the "evaporation paradox". Based on the updated meteorological data (1960-2019), we separately detected the spatiotemporal characteristics and the causes of the "evaporation paradox" in three subregions, namely Huaibei, Jianghuai, and Sunan, and throughout the entire province of Jiangsu in southeastern China. Different from the reported continuous unidirectional variations in the ETo, in the province of Jiangsu, it generally showed a decreasing trend before 1990 but followed an increasing trend from 1990 to 2019, which led to the different characteristics of the "evaporation paradox" in the periods from 1960 to 1989, from 1990 to 2019, and from 1960 to 2019. In the first 30 years, the reduction of the wind speed (WS) was the main reason for the decreased ETo, which consequently gave rise to the "evaporation paradox" in spring and winter in the Huaibei region and only in winter in the two other subregions and throughout the entire province. We noticed that the "evaporation paradox" in spring in the Sunan region was expressed by the decreased daily mean air temperature (Tmean) and the increased ETo which was chiefly induced by the decreased relative humidity (RH) and the increased vapor pressure deficit (VPD). After 1990, the decreased WS also dominated the decreased ETo and resulted in the "evaporation paradox" in winter in the Jianghuai region. Furthermore, the decreased sunshine hour (SH) was the main factor influencing the decreased ETo, thereby inducing the "evaporation paradox" in summer and autumn in the Jianghuai region and only in autumn in the Huaibei region and throughout the whole province from 1990 to 2019. In the whole study period from 1960 to 2019, the decreased SH was also found to be responsible for the decreased ETo and for the "evaporation paradox" in summer in all the subregions and throughout the whole province. However, regarding the "evaporation paradox" in autumn, in winter, and in the entire year in the Huaibei region and throughout the whole province, the observed decreased ETo was largely due to the reduced WS from 1960 to 2019. In summary, in addition to the air temperature, the ETo has shifted due to the other meteorological variables (especially the WS, the SH, and the VPD) and shaped the unique spatiotemporal characteristics of the "evaporation paradox" in the province of Jiangsu in southeastern China. Moreover, future studies and simulations addressing the regional climate change and hydrological cycles should take account of the changeable key meteorological variables in different subregions and seasons of the province of Jiangsu.


Asunto(s)
Cambio Climático , Conceptos Meteorológicos , China , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA