Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531364

RESUMEN

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Asunto(s)
Brucella , Brucelosis , Animales , Ratones , Brucella/fisiología , Proteómica , Brucelosis/metabolismo , Retículo Endoplásmico/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38153818

RESUMEN

Rice blast, caused by Magnaporthe oryzae(M.oryzae), is a destructive rice disease that reduces rice yield by 10% to 30% annually. It also affects other cereal crops such as barley, wheat, rye, millet, sorghum, and maize. Small RNAs (sRNAs) play an essential regulatory role in fungus-plant interaction during the fungal invasion, but studies on pathogenic sRNAs during the fungal invasion of plants based on multi-omics data integration are rare. This paper proposes a novel approach called Graph Embedding combined with Random Walk with Restart (GERWR) to identify pathogenic sRNAs based on multi-omics data integration during M.oryzae invasion. By constructing a multi-omics network (MRMO), we identified 29 pathogenic sRNAs of rice blast fungus. Further analysis revealed that these sRNAs regulate rice genes in a many-to-many relationship, playing a significant regulatory role in the pathogenesis of rice blast disease. This paper explores the pathogenic factors of rice blast disease from the perspective of multi-omics data analysis, revealing the inherent connection between pathogenic factors of different omics. It has essential scientific significance for studying the pathogenic mechanism of rice blast fungus, the rice blast fungus-rice model system, and the pathogen-host interaction in related fields.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Oryza/microbiología , Magnaporthe/genética , Virulencia
3.
Lab Chip ; 23(4): 671-683, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227118

RESUMEN

Inter-kingdom endosymbiotic interactions between bacteria and eukaryotic cells are critical to human health and disease. However, the molecular mechanisms that drive the emergence of endosymbiosis remain obscure. Here, we describe the development of a microfluidic system, named SEER (S̲ystem for the E̲volution of E̲ndosymbiotic R̲elationships), that automates the evolutionary selection of bacteria with enhanced intracellular survival and persistence within host cells, hallmarks of endosymbiosis. Using this system, we show that a laboratory strain of Escherichia coli that initially possessed limited abilities to survive within host cells, when subjected to SEER selection, rapidly evolved to display a 55-fold enhancement in intracellular survival. Notably, molecular dissection of the evolved strains revealed that a single-point mutation in a flexible loop of CpxR, a gene regulator that controls bacterial stress responses, substantially contributed to this intracellular survival. Taken together, these results establish SEER as the first microfluidic system for investigating the evolution of endosymbiosis, show the importance of CpxR in endosymbiosis, and set the stage for evolving bespoke inter-kingdom endosymbiotic systems with novel or emergent properties.


Asunto(s)
Bacterias , Simbiosis , Humanos , Simbiosis/genética , Bacterias/genética
4.
Elife ; 112022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587649

RESUMEN

The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella, the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of Bloc1s1 mRNA encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Inactivation of the Bloc1s1 gene impaired the ability to assemble BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella-containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Bloc1s1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus murine hepatitis virus also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.


Asunto(s)
Brucella , Brucelosis , Animales , Brucelosis/metabolismo , Brucelosis/microbiología , Endorribonucleasas/metabolismo , Endosomas/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas
5.
Proc Natl Acad Sci U S A ; 119(14): e2112886119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35363569

RESUMEN

Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.


Asunto(s)
Bacterias , Genoma Bacteriano , Aprendizaje Automático , Factores de Virulencia , Secuenciación Completa del Genoma , Bacterias/genética , Bacterias/patogenicidad , Fenotipo , Virulencia/genética , Factores de Virulencia/genética
6.
Front Plant Sci ; 13: 860791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463453

RESUMEN

Although growing evidence shows that microRNA (miRNA) regulates plant growth and development, miRNA regulatory networks in plants are not well understood. Current experimental studies cannot characterize miRNA regulatory networks on a large scale. This information gap provides an excellent opportunity to employ computational methods for global analysis and generate valuable models and hypotheses. To address this opportunity, we collected miRNA-target interactions (MTIs) and used MTIs from Arabidopsis thaliana and Medicago truncatula to predict homologous MTIs in soybeans, resulting in 80,235 soybean MTIs in total. A multi-level iterative bi-clustering method was developed to identify 483 soybean miRNA-target regulatory modules (MTRMs). Furthermore, we collected soybean miRNA expression data and corresponding gene expression data in response to abiotic stresses. By clustering these data, 37 MTRMs related to abiotic stresses were identified, including stress-specific MTRMs and shared MTRMs. These MTRMs have gene ontology (GO) enrichment in resistance response, iron transport, positive growth regulation, etc. Our study predicts soybean MTRMs and miRNA-GO networks under different stresses, and provides miRNA targeting hypotheses for experimental analyses. The method can be applied to other biological processes and other plants to elucidate miRNA co-regulation mechanisms.

7.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987022

RESUMEN

The tumor microenvironment (TME) is characterized by the activation of immune checkpoints, which limit the ability of immune cells to attack the growing cancer. To overcome immune suppression in the clinic, antigen-expressing viruses and bacteria have been developed to induce antitumor immunity. However, the safety and targeting specificity are the main concerns of using bacteria in clinical practice as antitumor agents. In our previous studies, we have developed an attenuated bacterial strain (Brucella melitensis 16M ∆vjbR, henceforth Bm∆vjbR) for clinical use, which is safe in all tested animal models and has been removed from the select agent list by the Centers for Disease Control and Prevention. In this study, we demonstrated that Bm∆vjbR homed to tumor tissue and improved the TME in a murine model of solid cancer. In addition, live Bm∆vjbR promoted proinflammatory M1 polarization of tumor macrophages and increased the number and activity of CD8+ T cells in the tumor. In a murine colon adenocarcinoma model, when combined with adoptive transfer of tumor-specific carcinoembryonic antigen chimeric antigen receptor CD8+ T cells, tumor cell growth and proliferation was almost completely abrogated, and host survival was 100%. Taken together, these findings demonstrate that the live attenuated bacterial treatment can defeat cancer resistance to chimeric antigen receptor T-cell therapy by remodeling the TME to promote macrophage and T cell-mediated antitumor immunity.


Asunto(s)
Bacterias/patogenicidad , Inmunoterapia/métodos , Recurrencia Local de Neoplasia/microbiología , Neoplasias/microbiología , Receptores Quiméricos de Antígenos/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Microambiente Tumoral
8.
Insects ; 12(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34940143

RESUMEN

Phytochemical toxins are considered a defense measure for herbivore invasion. To adapt this defensive strategy, herbivores use glutathione S-transferases (GSTs) as an important detoxification enzyme to cope with toxic compounds, but the underlying molecular basis for GST genes in this process remains unclear. Here, we investigated the basis of how GST genes in brown planthopper (BPH, Nilaparvata lugens (Stål)) participated in the detoxification of gramine by RNA interference. For BPH, the LC25 and LC50 concentrations of gramine were 7.11 and 14.99 µg/mL at 72 h after feeding, respectively. The transcriptions of seven of eight GST genes in BPH were induced by a low concentration of gramine, and GST activity was activated. Although interferences of seven genes reduced BPH tolerance to gramine, only the expression of NlGST1-1, NlGSTD2, and NlGSTE1 was positively correlated with GST activities, and silencing of these three genes inhibited GST activities in BPH. Our findings reveal that two new key genes, NlGSTD2 and NlGSTE1, play an essential role in the detoxification of gramine such as NlGST1-1 does in BPH, which not only provides the molecular evidence for the coevolution theory, but also provides new insight into the development of an environmentally friendly strategy for herbivore population management.

9.
Pathogens ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34832660

RESUMEN

Our understanding of how the host immune system thwarts bacterial evasive mechanisms remains incomplete. Here, we show that host protease neutrophil elastase acts on Acinetobacter baumannii and Pseudomonas aeruginosa to destroy factors that prevent serum-associated, complement-directed killing. The protease activity also enhances bacterial susceptibility to antibiotics in sera. These findings implicate a new paradigm where host protease activity on bacteria acts combinatorially with the host complement system and antibiotics to defeat bacterial pathogens.

10.
J Vis Exp ; (175)2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34605819

RESUMEN

Identification of emerging bacterial pathogens is critical for human health and security. Bacterial adherence to host cells is an essential step in bacterial infections and constitutes a hallmark of potential threat. Therefore, examining the adherence of bacteria to host cells can be used as a component of bacterial threat assessment. A standard method for enumerating bacterial adherence to host cells is to co-incubate bacteria with host cells, harvest the adherent bacteria, plate the harvested cells on solid media, and then count the resultant colony forming units (CFU). Alternatively, bacterial adherence to host cells can be evaluated using immunofluorescence microscopy-based approaches. However, conventional strategies for implementing these approaches are time-consuming and inefficient. Here, a recently developed automated fluorescence microscopy-based imaging method is described. When combined with high-throughput image processing and statistical analysis, the method enables rapid quantification of bacteria that adhere to host cells. Two bacterial species, Gram-negative Pseudomonas aeruginosa and Gram-positive Listeria monocytogenes and corresponding negative controls, were tested to demonstrate the protocol. The results show that this approach rapidly and accurately enumerates adherent bacteria and significantly reduces experimental workloads and timelines.


Asunto(s)
Adhesión Bacteriana , Humanos
11.
iScience ; 24(3): 102192, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33718841

RESUMEN

Phagocytosis and autophagy play critical roles in immune defense. The human fungal pathogen Cryptococcus neoformans (Cn) subverts host autophagy-initiation complex (AIC)-related proteins, to promote its phagocytosis and intracellular parasitism of host cells. The mechanisms by which the pathogen engages host AIC-related proteins remain obscure. Here, we show that the recruitment of host AIC proteins to forming phagosomes is dependent upon the activity of CD44, a host cell surface receptor that engages fungal hyaluronic acid (HA). This interaction elevates intracellular Ca2+ concentrations and activates CaMKKß and its downstream target AMPKα, which results in activation of ULK1 and the recruitment of AIC components. Moreover, we demonstrate that HA-coated beads efficiently recruit AIC components to phagosomes and CD44 interacts with AIC components. Taken together, these findings show that fungal HA plays a critical role in directing the internalization and productive intracellular membrane trafficking of a fungal pathogen of global importance.

12.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567582

RESUMEN

Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.


Asunto(s)
Botrytis/patogenicidad , Ciclofilinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Phaseolus/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Adaptación Fisiológica , Ciclofilinas/genética , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Hojas de la Planta/microbiología , Virulencia
13.
Artículo en Inglés | MEDLINE | ID: mdl-32528902

RESUMEN

Acinetobacter baumannii is an important causative agent of nosocomial infections worldwide. The pathogen also readily acquires resistance to antibiotics, and pan-resistant strains have been reported. A. baumannii is widely regarded as an extracellular bacterial pathogen. However, accumulating evidence demonstrates that the pathogen can invade, survive or persist in infected mammalian cells. Unfortunately, the molecular mechanisms controlling these processes remain poorly understood. Here, we show that Drosophila S2 cells provide several attractive advantages as a model system for investigating the intracellular lifestyle of the pathogen, including susceptibility to bacterial intracellular replication and limited infection-induced host cell death. We also show that the Drosophila system can be used to rapidly identify host factors, including MAP kinase proteins, which confer susceptibility to intracellular parasitism. Finally, analysis of the Drosophila system suggested that host proteins that regulate organelle biogenesis and membrane trafficking contribute to regulating the intracellular lifestyle of the pathogen. Taken together, these findings establish a novel model system for elucidating interactions between A. baumannii and host cells, define new factors that regulate bacterial invasion or intracellular persistence, and identify subcellular compartments in host cells that interact with the pathogen.


Asunto(s)
Acinetobacter baumannii , Infección Hospitalaria , Acinetobacter baumannii/genética , Animales , Antibacterianos , Drosophila
14.
Mol Plant Pathol ; 21(6): 834-853, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32301267

RESUMEN

Simultaneous transcriptome analyses of both host plants and pathogens, and functional validation of the identified differentially expressed genes (DEGs) allow us to better understand the mechanisms underlying their interactions. Here, we analyse the mixed transcriptome derived from Botrytis cinerea (the causal agent of grey mould) infected tomato leaves at 24 hr after inoculation, a critical time point at which the pathogen has penetrated and developed in the leaf epidermis, whereas necrotic symptoms have not yet appeared. Our analyses identified a complex network of genes involved in the tomato-B. cinerea interaction. The expression of fungal transcripts encoding candidate effectors, enzymes for secondary metabolite biosynthesis, hormone and reactive oxygen species (ROS) production, and autophagy-related proteins was up-regulated, suggesting that these genes may be involved in the initial infection processes. Specifically, tomato genes involved in phytoalexin production, stress responses, ATP-binding cassette transporters, pathogenesis-related proteins, and WRKY DNA-binding transcription factors were up-regulated. We functionally investigated several B. cinerea DEGs via gene replacement and pathogenicity assays, and demonstrated that BcCGF1 was a novel virulence-associated factor that mediates fungal development and virulence via regulation of conidial germination, conidiation, infection structure formation, host penetration, and stress adaptation. The fungal infection-related development was controlled by BcCGF-mediated ROS production and exogenous cAMP restored the mutant infection-related development. Our findings provide new insights into the elucidation of the simultaneous tactics of pathogen attack and host defence. Our systematic elucidation of BcCGF1 in mediating fungal pathogenesis may open up new targets for fungal disease control.


Asunto(s)
Botrytis/genética , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Transcriptoma , Adaptación Fisiológica , Botrytis/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Especies Reactivas de Oxígeno/metabolismo , Esporas Fúngicas , Virulencia/genética
15.
New Phytol ; 225(2): 930-947, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529514

RESUMEN

Histone 3 Lysine 4 (H3K4) demethylation is ubiquitous in organisms, however the roles of H3K4 demethylase JARID1(Jar1)/KDM5 in fungal development and pathogenesis remain largely unexplored. Here, we demonstrate that Jar1/KDM5 in Botrytis cinerea, the grey mould fungus, plays a crucial role in these processes. The BcJAR1 gene was deleted and its roles in fungal development and pathogenesis were investigated using approaches including genetics, molecular/cell biology, pathogenicity and transcriptomic profiling. BcJar1 regulates H3K4me3 and both H3K4me2 and H3K4me3 methylation levels during vegetative and pathogenic development, respectively. Loss of BcJAR1 impairs conidiation, appressorium formation and stress adaptation; abolishes infection cushion (IC) formation and virulence, but promotes sclerotium production in the ΔBcjar1 mutants. BcJar1 controls reactive oxygen species (ROS) production and proper assembly of Sep4, a core septin protein and virulence determinant, to initiate infection structure (IFS) formation and host penetration. Exogenous cAMP partially restored the mutant appressorium, but not IC, formation. BcJar1 orchestrates global expression of genes for ROS production, stress response, carbohydrate transmembrane transport, secondary metabolites, etc., which may be required for conidiation, IFS formation, host penetration and virulence of the pathogen. Our work systematically elucidates BcJar1 functions and provides novel insights into Jar1/KDM5-mediated H3K4 demethylation in regulating fungal development and pathogenesis.


Asunto(s)
Botrytis/genética , Botrytis/patogenicidad , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adaptación Fisiológica , Botrytis/crecimiento & desarrollo , Pared Celular/metabolismo , Secuencia Conservada , AMP Cíclico/metabolismo , Desmetilación , Regulación hacia Abajo/genética , Ontología de Genes , Modelos Biológicos , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Esporas Fúngicas/metabolismo , Estrés Fisiológico , Virulencia/genética
16.
Mol Plant Pathol ; 20(5): 731-747, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31008573

RESUMEN

Botrytis cinerea is the causative agent of grey mould on over 1000 plant species and annually causes enormous economic losses worldwide. However, the fungal factors that mediate pathogenesis of the pathogen remain largely unknown. Here, we demonstrate that a novel B. cinerea-specific pathogenicity-associated factor BcHBF1 (hyphal branching-related factor 1), identified from virulence-attenuated mutant M8008 from a B. cinerea T-DNA insertion mutant library, plays an important role in hyphal branching, infection structure formation, sclerotial formation and full virulence of the pathogen. Deletion of BcHBF1 in B. cinerea did not impair radial growth of mycelia, conidiation, conidial germination, osmotic- and oxidative-stress adaptation, as well as cell wall integrity of the ∆Bchbf1 mutant strains. However, loss of BcHBF1 impaired the capability of hyphal branching, appressorium and infection cushion formation, appressorium host penetration and virulence of the pathogen. Moreover, disruption of BcHBF1 altered conidial morphology and dramatically impaired sclerotial formation of the mutant strains. Complementation of BcHBF1 completely rescued all the phenotypic defects of the ∆Bchbf1 mutants. During young hyphal branching, host penetration and early invasive growth of the pathogen, BcHBF1 expression was up-regulated, suggesting that BcHBF1 is required for these processes. Our findings provide novel insights into the fungal factor mediating pathogenesis of the grey mould fungus via regulation of its infection structure formation, host penetration and invasive hyphal branching and growth.


Asunto(s)
Botrytis/genética , Botrytis/patogenicidad , Proteínas Fúngicas/genética , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Hifa/patogenicidad , Adaptación Fisiológica , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Morfogénesis , Ósmosis , Estrés Oxidativo , Esporas Fúngicas/crecimiento & desarrollo , Virulencia/genética
17.
Front Genet ; 10: 296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984250

RESUMEN

In recent years, studies have shown that phytopathogenic fungi possess the ability of cross-kingdom regulation of host plants through small RNAs (sRNAs). Magnaporthe oryzae, a causative agent of rice blast, introduces disease by penetrating the rice tissues through appressoria. However, little is known about the transboundary regulation of M. oryzae sRNAs during the interaction of the pathogen with its host rice. Therefore, investigation of the regulation of M. oryzae through sRNAs in the infected rice plants has important theoretical and practical significance for disease control and production improvement. Based on the high-throughput data of M. oryzae sRNAs and the mixed sRNAs during infection, the differential expressions of sRNAs in M. oryzae before and during infection were compared, it was found that expression levels of 366 M. oryzae sRNAs were upregulated significantly during infection. We trained a SVM model which can be used to predict differentially expressed sRNAs, which has reference significance for the prediction of differentially expressed sRNAs of M. oryzae homologous species, and can facilitate the research of M. oryzae in the future. Furthermore, fifty core targets were selected from the predicted target genes on rice for functional enrichment analysis, the analysis reveals that there are nine biological processes and one KEGG pathway associated with rice growth and disease defense. These functions correspond to thirteen rice genes. A total of fourteen M. oryzae sRNAs targeting the rice genes were identified by data analysis, and their authenticity was verified in the database of M. oryzae sRNAs. The 14 M. oryzae sRNAs may participate in the transboundary regulation process and act as sRNA effectors to manipulate the rice blast process.

18.
Plant Dis ; 103(4): 668-676, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30742555

RESUMEN

Verticillium wilt of lettuce, caused by the soilborne pathogen Verticillium dahliae, poses a serious threat to the California lettuce industry. Knowledge of disease development and its impact on postharvest marketability would facilitate better management of the affected fields. This study investigated postharvest marketability of 22 lettuce varieties harvested from two Verticillium-infested commercial lettuce fields in Salinas and Watsonville, CA, in 2005 using a randomized complete block design. Periodic sampling to monitor disease in several crisphead varieties in the field demonstrated that root symptoms developed quickly at later stages of heading, followed by the onset of foliar symptoms as the crop reached harvest maturity. Harvested marketable heads were vacuum cooled soon after harvest to about 4°C and maintained at this temperature in commercial coolers. The impact of V. dahliae on postharvest marketability was assessed based on the percentage of heads per case deemed marketable following 1, 2, and 3 weeks of refrigerated storage. Across both field experiments, the average disease incidence and postharvest marketability ranged from 4.2 to 87.5% and from 69.4 to 100.0%, respectively, among lettuce types and varieties. The Pearson correlation analysis detected no significant relationship between disease incidence and postharvest marketability across all varieties tested (r = 0.041, P = 0.727), or within lettuce types, even though V. dahliae was recovered from 34% of the plants harvested, and recovery ranged from 0 to 73.3% for V. dahliae and from 10 to 91.7% for non-V. dahliae (V. isaacii or V. klebahnii) species. These findings demonstrate that growers can harvest lettuce from an infested field before foliar symptoms develop with negligible impact by Verticillium spp. on postharvest marketability or quality.


Asunto(s)
Microbiología de Alimentos , Lactuca , Verticillium , California , Calidad de los Alimentos , Lactuca/microbiología , Verticillium/fisiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-29732320

RESUMEN

Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR) sensor IRE1α (inositol-requiring enzyme 1) and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1) conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Brucella melitensis/patogenicidad , Brucelosis/patología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Beclina-1/genética , Brucelosis/microbiología , Línea Celular , Drosophila melanogaster , Endorribonucleasas/genética , Interacciones Huésped-Patógeno/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , MAP Quinasa Quinasa Quinasa 5/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Células RAW 264.7 , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología , Proteínas de Transporte Vesicular/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
20.
Environ Microbiol ; 20(5): 1794-1814, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29614212

RESUMEN

The process of initiation of host invasion and survival of some foliar phytopathogenic fungi in the absence of external nutrients on host leaf surfaces remains obscure. Here, we demonstrate that gluconeogenesis plays an important role in the process and nutrient-starvation adaptation before the pathogen host invasion. Deletion of phosphoenolpyruvate carboxykinase gene BcPCK1 in gluconeogenesis in Botrytis cinerea, the causative agent of grey mould, resulted in the failure of the ΔBcpck1 mutant conidia to germinate on hard and hydrophobic surface and penetrate host cells in the absence of glucose, reduction in conidiation and slow conidium germination in a nutrient-rich medium. The wild-type and ΔBcpck1 conidia germinate similarly in the presence of glucose (higher concentration) as the sole carbon source. Conidial glucose-content should reach a threshold level to initiate germination and host penetration. Infection structure formation by the mutants displayed a glucose-dependent fashion, which corresponded to the mutant virulence reduction. Exogenous glucose or complementation of BcPCK1 completely rescued all the developmental and virulence defects of the mutants. Our findings demonstrate that BcPCK1 plays a crucial role in B. cinerea pathogenic growth and virulence, and provide new insights into gluconeogenesis mediating pathogenesis of plant fungal pathogens via initiation of conidial germination and host penetration.


Asunto(s)
Botrytis/metabolismo , Proteínas Fúngicas/metabolismo , Gluconeogénesis/fisiología , Botrytis/genética , Fragaria/microbiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Gluconeogénesis/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Esporas Fúngicas/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...