Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
AMB Express ; 9(1): 118, 2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31352530

RESUMEN

During industrial fermentation, Streptomyces clavuligerus F613-1 simultaneously produces primary product clavulanic acid (CA) and cephamycin C. The cephamycin C biosynthetic gene cluster and pathway have been basically elucidated and the CcaR positive regulator was found to control the cephamycin genes expression. However, additional mechanisms of regulation cannot be excluded. The BB341_RS13780/13785 gene pair in S. clavuligerus F613-1 (annotated as SCLAV_2960/2959 in S. clavuligerus ATCC27064) encodes a bacterial two-component system (TCS) and were designated as CepRS (for cephamycin regulator/sensor). CepRS significantly affects cephamycin C production but only slightly affects CA production. To further understand the regulation of cephamycin C biosynthesis, the cepRS genes were deleted from S. clavuligerus F613-1. The deletion mutant resulted in decreased cephamycin C production but had no phenotypic effects. Real-time quantitative polymerase chain reaction analysis revealed that CepRS regulates the expression of most genes involved in cephamycin C biosynthesis, with electrophoretic mobility shift assays showing that CepR interacts with the cefD-cmcI intergenic region. These results demonstrate that the CepR response regulator serves as a transcriptional activator of cephamycin C biosynthesis, which may provide an approach for metabolic engineering methods for CA production by S. clavuligerus F613-1 in future.

2.
Front Microbiol ; 10: 244, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837970

RESUMEN

Streptomyces clavuligerus F613-1 produces a clinically important ß-lactamase inhibitor, clavulanic acid (CA). Although the biosynthesis pathway of CA has essentially been elucidated, the global regulatory mechanisms of CA biosynthesis remain unclear. The paired genes cagS and cagR, which are annotated, respectively, as orf22 and orf23 in S. clavuligerus ATCC 27064, encode a bacterial two-component regulatory system (TCS) and were found next to the CA biosynthetic gene cluster of S. clavuligerus F613-1. To further elucidate the regulatory mechanism of CA biosynthesis, the CagRS TCS was deleted from S. clavuligerus F613-1. Deletion of cagRS resulted in decreased production of CA, but the strain phenotype was not otherwise affected. Both transcriptome and ChIP-seq data revealed that, in addition to CA biosynthesis, the CagRS TCS mainly regulates genes involved in primary metabolism, such as glyceraldehyde 3-phosphate (G3P) metabolism and arginine biosynthesis. Notably, both G3P and arginine are precursors of CA. Electrophoretic mobility shift assays demonstrated that the response regulator CagR could bind to the intergenic regions of argG, argC, oat1, oat2, ceaS1, and claR in vitro, suggesting that CagR can directly regulate genes involved in arginine and CA biosynthesis. This study indicated that CagRS is a pleiotropic regulator that can directly affect the biosynthesis of CA and indirectly affect CA production by regulating the metabolism of arginine and G3P. Our findings provide new insights into the regulation of CA biosynthetic pathways and provide an innovative approach for future metabolic engineering efforts for CA production in S. clavuligerus.

3.
Electron. j. biotechnol ; 28: 41-46, July. 2017. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1015839

RESUMEN

Background: Streptomyces clavuligerus was the producer of clavulanic acid, claR, a pathway-specific transcriptional regulator in S. clavuligerus, positively regulates clavulanic acid biosynthesis. In this study, the promoter-less kanamycin resistance gene neo was fused with claR to obtain strain NEO from S. clavuligerus F613-1. The claR-neo fusion strain NEO was mutated using physical and chemical mutagens and then screened under high concentrations of kanamycin for high-yield producers of clavulanic acid. Results: The reporter gene neo was fused downstream of claR and used as an indicator for expression levels of claR in strain NEO. After three rounds of continuous treatment and screening, the high-yield clavulanic acid-producing strain M3-19 was obtained. In the shaking flask model, the clavulanic acid titer of M3-19 reached 4.33 g/L, which is an increase of 33% over the titer of 3.26 g/L for the starting strains S. clavuligerus F613-1 and NEO. Conclusions: Our results indicate that neo can be effectively used as a reporter for the expression of late-stage biosynthetic genes when screening for high-yield strains and that this approach has strong potential for improving Streptomyces strains of industrial value.


Asunto(s)
Streptomyces/genética , Streptomyces/metabolismo , Kanamicina , Ácido Clavulánico/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Bioensayo , Proteínas Recombinantes , Cromatografía Líquida de Alta Presión , Mutagénesis , Regiones Promotoras Genéticas , Genes Reporteros , Fusión Génica , Fermentación , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Genome Announc ; 5(20)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522727

RESUMEN

Streptomyces tsukubaensis strain F601 was found to be a producer of the immunosuppressive drug tacrolimus. The draft genome sequence of this strain was approximately 8.52 Mbp. Genes involved in the biosynthesis of tacrolimus were identified in the genome. This draft genome sequence will provide insights into the genetic basis of tacrolimus biosynthesis and regulation.

5.
Genome Announc ; 4(5)2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27660792

RESUMEN

Streptomyces clavuligerus strain F613-1 is an industrial strain with high-yield clavulanic acid production. In this study, the complete genome sequence of S. clavuligerus strain F613-1 was determined, including one linear chromosome and one linear plasmid, carrying numerous sets of genes involving in the biosynthesis of clavulanic acid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...