Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37688180

RESUMEN

Flexible wearable strain sensors based on laser-induced graphene (LIG) have attracted significant interest due to their simple preparation process, three-dimensional porous structure, excellent electromechanical characteristics, and remarkable mechanical robustness. In this study, we demonstrated that LIG with various defects could be prepared on the surface of polyimide (PI) film, patterned in a single step by adjusting the scanning speed while maintaining a constant laser power of 12.4 W, and subjected to two repeated scans under ambient air conditions. The results indicated that LIG produced at a scanning speed of 70 mm/s exhibited an obvious stacked honeycomb micropore structure, and the flexible strain sensor fabricated with this material demonstrated stable resistance. The sensor exhibited high sensitivity within a low strain range of 0.4-8.0%, with the gauge factor (GF) reaching 107.8. The sensor demonstrated excellent stability and repeatable response at a strain of 2% after approximately 1000 repetitions. The flexible wearable LIG-based sensor with a serpentine bending structure could be used to detect various physiological signals, including pulse, finger bending, back of the hand relaxation and gripping, blinking eyes, smiling, drinking water, and speaking. The results of this study may serve as a reference for future applications in health monitoring, medical rehabilitation, and human-computer interactions.

2.
J Mater Chem B ; 9(3): 719-730, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33306084

RESUMEN

Conductive hydrogels have attracted widespread attention in wearable electronic devices and human motion detection. However, designing self-healing hydrogels with high conductivity and excellent mechanical properties remains a challenge. In this work, polyvinyl alcohol/carbon nanotubes/graphene (PVA/CNTs/graphene) with an island-bridge hydrogel structure and self-healing properties was designed by merging PVA/CNTs hydrogel and PVA/graphene hydrogel, in which the PVA/graphene hydrogel acts as an "island" and PVA/CNTs hydrogel acts as a "bridge" to bridge the entire conductive network. Hydrogen-bonding between the borate ion and the -OH group of PVA allows the conductive hydrogel to heal without any external stimulation. The PVA/CNTs/graphene hydrogel can be used for both stretchable strain and pressure sensors. The obtained PVA/CNTs/graphene composite hydrogel exhibits excellent electrical conductivity, extreme high elastic strain (up to 900%) and strong mechanical pressure (up to 10 kPa). The strain sensor based on the PVA/CNTs/graphene hydrogel exhibits excellent tensile strain sensitivity (a gauge factor of 152.6 in the strain region of 316-600%) and wide detection working range (1-600%) with high durability and repeatability. The sensor also remains highly sensitive when being used as a pressure sensor (-0.127 kPa-1 at 0-5 kPa). Additionally, the PVA/CNTs/graphene hydrogel-based sensor can detect human motions after multiple cuts and self-healing with excellent stability and repeatability. The PVA/CNTs/graphene hydrogel provides a new idea in the development of wearable electronics, demonstrating the potential of the next generation of wearable electronics.


Asunto(s)
Hidrogeles/química , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Grafito/química , Hidrogeles/síntesis química , Nanotubos de Carbono/química , Tamaño de la Partícula , Alcohol Polivinílico/química , Porosidad , Presión , Propiedades de Superficie
3.
Environ Res ; 193: 110587, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307080

RESUMEN

The MXene-based transition metal oxide composite is a potential candidate for photocatalysts. Rod-like pseudohexagonal phase Nb2O5/Nb2CTx composites were synthesized by a simple hydrothermal oxidation of 2D layered Nb2CTx. The Nb2O5/Nb2CTx composites show superior photocatalytic activity for 98.5% of degradation of Rhodamine B (RhB) for 120 min and 91.2% of tetracycline hydrochloride (TC-HCl) for 180 min under visible light irradiation. The Schottky junction is formed between Nb2O5 nanorods and Nb2CTx and the photo-generated carriers are effectively separated, enhancing the photocatalytic activity of the Nb2O5/Nb2CTx. High photoactivity and cycle stability of Nb2O5/Nb2CTx composites indicate that hydrothermal oxidation of 2D layered Nb2CTx is an alternative to prepare efficient photocatalyst for degradation of organic pollutants.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Catálisis , Luz , Niobio , Tomografía Computarizada por Rayos X
4.
Environ Sci Pollut Res Int ; 24(11): 10443-10453, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28281068

RESUMEN

Indicator polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in 289 seafood samples including fishes, crustaceans, and shellfish collected from six administrative regions in Xiamen of China. The residual levels of PCBs, dichlorodiphenyltrichloroethane and its metabolites (DDTs), and hexachlorocyclohexanes (HCHs) ranged

Asunto(s)
Hidrocarburos Clorados , Bifenilos Policlorados , Animales , China , Plaguicidas , Medición de Riesgo , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA