Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594791

RESUMEN

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Asunto(s)
Vesículas Extracelulares , Osificación Heterotópica , Humanos , Receptor de Proteína C Endotelial , Vesículas Extracelulares/patología , Osificación Heterotópica/patología , Osificación Heterotópica/terapia , Matriz Extracelular , Fibroblastos
2.
Bone Res ; 12(1): 11, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383487

RESUMEN

Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Vesículas Extracelulares , Osificación Heterotópica , Humanos , Ratas , Animales , Encéfalo/metabolismo , Osificación Heterotópica/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Barrera Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo
3.
Bioact Mater ; 34: 37-50, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173842

RESUMEN

Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis. However, no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial. Therefore, the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects. With the use of in vitro and in vivo models of osteoarthritis, hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells. This results in lysosomal membrane permeabilization (LMP) and release of cathepsin B (CTSB) into the cytosol. The cytosolic CTSB, in turn, activates NOD-like receptor protein-3 (NLRP3) inflammasomes and subsequently instigates chondrocyte pyroptosis. Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis. The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.

4.
Cartilage ; : 19476035231189841, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646151

RESUMEN

OBJECTIVE: Activation of sympathetic tone is important for cartilage degradation in osteoarthritis (OA). Recent studies reported that sympathetic signals can affect the mitochondrial function of target cells. It is unknown whether this effect exits in chondrocytes and affects chondrocyte catabolism. The contribution of mitochondrial dynamics in the activation of α2-adrenergic signal-mediated chondrocyte catabolism was investigated in this study. DESIGN: Primary chondrocytes were stimulated with norepinephrine (NE) alone, or pretreated with an α2-adrenergic receptor (Adra2) antagonist (yohimbine) and followed by stimulation with NE. Changes in chondrocyte metabolism and their mitochondrial dynamics were investigated. RESULTS: We demonstrated that NE stimulation induced increased gene and protein expressions of matrix metalloproteinase-3 and decreased level of aggrecan by chondrocytes. This was accompanied by upregulated mitochondriogenesis and the number of mitochondria, when compared with the vehicle-treated controls. Mitochondrial fusion and fission, and mitophagy also increased significantly in response to NE stimulation. Inhibition of Adra2 attenuated chondrocyte catabolism and mitochondrial dynamics induced by NE. CONCLUSIONS: The present findings indicate that upregulation of mitochondrial dynamics through mitochondriogenesis, fusion, fission, and mitophagy is responsible for activation of α2-adrenergic signal-mediated chondrocyte catabolism. The hypothesis that "α2-adrenergic signal activation promotes cartilage degeneration in temporomandibular joint osteoarthritis (TMJ-OA) by upregulating mitochondrial dynamics in chondrocytes" is validated. This represents a new regulatory mechanism in the chondrocytes of TMJ-OA that inhibits abnormal activation of mitochondrial fusion and fission is a potential regulator for improving mitochondrial function and inhibiting chondrocyte injury and contrives a potentially innovative therapeutic direction for the prevention of TMJ-OA.

5.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395388

RESUMEN

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Asunto(s)
Osteoartritis , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Osteoartritis/metabolismo , ARN/genética
6.
Inflammation ; 46(6): 2225-2240, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37458919

RESUMEN

Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.


Asunto(s)
Osificación Heterotópica , Humanos , Ratas , Animales , Microtomografía por Rayos X , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Tendones , Macrófagos/metabolismo , Desoxirribonucleasas/farmacología , Osteogénesis
7.
Am J Pathol ; 193(9): 1208-1222, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328100

RESUMEN

Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.


Asunto(s)
Fibrosis de la Submucosa Bucal , Humanos , Ratas , Animales , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Transición Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliales/metabolismo
8.
Front Bioeng Biotechnol ; 11: 1138601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949886

RESUMEN

Introduction: Sensory nerves and vessels are critical for skeletal development and regeneration, but crosstalk between neurovascular network and mineralization are not clear. The aim of this study was to explore neurovascular changes and identify bioactive regulators during in situ osteogenesis. Method: In situ osteogenesis model was performed in male rats following Achilles tenotomy. At 3, 6 and 9 weeks after surgery, mineralization, blood vessels, sensory innervation, and bioactive regulators expression were evaluated via micro-computed tomography, immunofluorescent staining, histology and reverse transcriptase-polymerase chain reaction analyses. Result: In the process of in situ osteogenesis, the mineral density increased with time, and the locations of minerals, nerves and blood vessels were highly correlated at each time point. The highest density of sensory nerve was observed in the experimental group at the 3rd week, and then gradually decreased with time, but still higher than that in the sham control group. Among many regulatory factors, semaphorin 3A (Sema3A) was highly expressed in experimental model and its expression was temporally sequential and spatially correlated sensory nerve. Conclusion: The present study showes that during in situ osteogenesis, innervation and angiogenesis are highly correlated, and Sema3A is associated with the position and expression of the sensory nerve.

9.
Carbohydr Polym ; 294: 119773, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868751

RESUMEN

Proteoglycans consist of core proteins and one or more covalently-linked glycosaminoglycan chains. They are structurally complex and heterogeneous. Proteoglycans bind to cell surface receptors, cytokines, growth factors and have strong affinity for collagen fibrils. Together with their complex spatial structures and different charge densities, proteoglycans are directly or indirectly involved in biomineralization. The present review focused on the potential mechanisms of proteoglycans-mediated biomineralization. Topics covered include the ability of proteoglycans to influence the proliferation and differentiation of odontoblasts and osteoblasts through complex signaling pathways, as well as regulate the aggregation of collagen fibrils and mineral deposition. The functions of proteoglycans in mineralization regulation and biomimetic properties render them important components in bone tissue engineering. Hence, the integrated impact of proteoglycans on bone formation was also succinctly deliberated. The potential of proteoglycans to function therapeutic targets for relieving the symptoms of ectopic mineralization and mineralization defects was also comprehensively addressed.


Asunto(s)
Biomineralización , Proteoglicanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Proteoglicanos/química
10.
Front Bioeng Biotechnol ; 10: 901749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573252

RESUMEN

Introduction: Degradation of the condylar cartilage during temporomandibular joint osteoarthritis (TMJ-OA) results in the infiltration of nerves, blood vessels and inflammatory cells from the subchondral bone into the cartilage. The interaction among innervation, angiogenesis and inflammation in the condylar cartilage of TMJ-OA remains largely unknown. Method: In the present study, microarray-based transcriptome analysis was used to detect, and quantitative real-time polymerase chain reaction was used to validate transcriptome changes in the condylar cartilage from a well-established rat TMJ-OA model. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction (PPI) analyses were conducted. Result: There were 1817 differentially expressed genes (DEGs, fold change ≥2, p < 0.05) between TMJ-OA and control cartilages, with 553 up-regulated and 1,264 down-regulated genes. Among those genes, representative DEGs with known/suspected roles in innervation, angiogenesis and inflammation were further validated by enriched GO terms and KEGG pathways. The DEGs related to innervation were predominately enriched in the GO terms of neurogenesis, generation of neurons, and KEGG pathways of cholinergic synapse and neurotrophin signaling. Genes related to angiogenesis were enriched in GO terms of vasculature and blood vessel development, and KEGG pathways of hypoxia-inducible factor 1 (HIF-1) pathway and calcium signaling pathway. For inflammation, the DEGs were enriched in the GO terms of immune system process and immune response, and KEGG pathways of Toll-like receptor and transforming growth factor ß (TGFß) signaling. Analysis with PPI indicated that the aforementioned DEGs were highly-interacted. Several hub genes such as v-akt murine thymoma viral oncogene homolog 1 (Akt1), glycogen synthase kinase 3ß (Gsk3b), fibroblast growth factor 2 (Fgf2) and nerve growth factor receptor (Ngfr) were validated. Conclusion: The present study demonstrated, for the first time, that intimate interactions exist among innervation, angiogenesis and inflammation in the condylar cartilage of TMJ-OA.

11.
Sci Adv ; 8(19): eabn1556, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35544558

RESUMEN

Pathological cartilage calcification plays an important role in osteoarthritis progression but in which the origin of calcified extracellular vesicles (EVs) and their effects remain unknown. Here, we demonstrate that pathological cartilage calcification occurs in the early stage of the osteoarthritis in which the calcified EVs are closely involved. Autophagosomes carrying the minerals are released in EVs, and calcification is induced by those autophagy-regulated calcified EVs. Autophagy-derived microtubule-associated proteins 1A/1B light chain 3B (LC3)-positive EVs are the major population of calcified EVs that initiate pathological calcification. Release of LC3-positive calcified EVs is caused by blockage of the autophagy flux resulted from histone deacetylase 6 (HDAC6)-mediated microtubule destabilization. Inhibition of HDAC6 activity blocks the release of the LC3-positive calcified EVs by chondrocytes and effectively reverses the pathological calcification and degradation of cartilage. The present work discovers that calcified EVs derived from autophagosomes initiate pathological cartilage calcification in osteoarthritis, with potential therapeutic targeting implication.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Autofagia , Cartílago/metabolismo , Condrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Osteoartritis/etiología , Osteoartritis/metabolismo
12.
Adv Sci (Weinh) ; 8(7): 2003390, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854888

RESUMEN

For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.


Asunto(s)
Enfermedades Óseas/fisiopatología , Huesos/inervación , Fibras Nerviosas/fisiología , Nervios Periféricos/fisiología , Transducción de Señal/fisiología , Humanos , Células Madre Mesenquimatosas/fisiología
13.
Biol Rev Camb Philos Soc ; 95(4): 960-985, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32207559

RESUMEN

In the progression of osteoarthritis, pathological calcification in the affected joint is an important feature. The role of these crystallites in the pathogenesis and progression of osteoarthritis is controversial; it remains unclear whether they act as a disease initiator or are present as a result of joint damage. Recent studies reported that the molecular mechanisms regulating physiological calcification of skeletal tissues are similar to those regulating pathological or ectopic calcification of soft tissues. Pathological calcification takes place when the equilibrium is disrupted. Calcium phosphate crystallites are identified in most affected joints and the presence of these crystallites is closely correlated with the extent of joint destruction. These observations suggest that pathological calcification is most likely to be a disease initiator instead of an outcome of osteoarthritis progression. Inhibiting pathological crystallite deposition within joint tissues therefore represents a potential therapeutic target in the management of osteoarthritis.


Asunto(s)
Calcinosis/patología , Osteoartritis/patología , Apoptosis , Bolsa Sinovial/patología , Calcinosis/clasificación , Calcinosis/complicaciones , Calcinosis/etiología , Calcio/metabolismo , Cartílago/patología , Condrocitos/patología , Colágeno/fisiología , Difosfatos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/patología , Vesículas Extracelulares/metabolismo , Humanos , Menisco/patología , Mitocondrias/fisiología , Osteoartritis/complicaciones , Osteoartritis/etiología , Fosfatos/metabolismo , Proteoglicanos/fisiología , Pirofosfatasas/fisiología , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...