Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Commun Biol ; 7(1): 562, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734709

RESUMEN

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Asunto(s)
Disfunción Cognitiva , Exosomas , Proteína HMGB1 , Células Madre Mesenquimatosas , MicroARNs , Encefalopatía Asociada a la Sepsis , MicroARNs/genética , MicroARNs/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Animales , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/genética , Ratones , Exosomas/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Humanos , Ratones Endogámicos C57BL , Sepsis/genética , Sepsis/metabolismo , Sepsis/complicaciones , Modelos Animales de Enfermedad
2.
Environ Sci Technol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768015

RESUMEN

Tropical small island developing states (SIDS), with their geographical isolation and limited resources, heavily rely on the fisheries industry for food and revenue. The presence of marine lipophilic phycotoxins (MLPs) poses risks to their economy and human health. To understand the contamination status and potential risks, the Republic of Kiribati was selected as the representative tropical SIDS and 55 species of 256 coral reef fish encompassing multiple trophic levels and feeding strategies were collected to analyze 17 typical MLPs. Our results showed that the potential risks of ciguatoxins were the highest and approximately 62% of fish species may pose risks for consumers. Biomagnification of ciguatoxins was observed in the food web with a trophic magnification factor of 2.90. Brevetoxin-3, okadaic acid, and dinophysistoxin-1 and -2 were first reported, but the risks posed by okadaic acid and dinophysistoxins were found to be negligible. The correlation analysis revealed that fish body size and trophic position are unreliable metrics to indicate the associated risks and prevent the consumption of contaminated fish. The potential risks of MLPs in Kiribati are of concern, and our findings can serve as valuable inputs for developing food safety policies and fisheries management strategies specific to tropical SIDS contexts.

3.
Acta Biomater ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734284

RESUMEN

Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.

4.
Front Immunol ; 15: 1374437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711507

RESUMEN

Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.


Asunto(s)
Perfilación de la Expresión Génica , Macrófagos , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , ARN Largo no Codificante , Transcriptoma , ARN Largo no Codificante/genética , Animales , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Complejo Mycobacterium avium/inmunología , Complejo Mycobacterium avium/genética , Ratones , Infección por Mycobacterium avium-intracellulare/inmunología , Infección por Mycobacterium avium-intracellulare/genética , Infección por Mycobacterium avium-intracellulare/microbiología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones Endogámicos C57BL , Células Cultivadas , Regulación de la Expresión Génica
5.
World J Clin Cases ; 12(9): 1569-1577, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38576746

RESUMEN

BACKGROUND: Ovarian cancer is one of the most common malignant tumors in female reproductive system in the world, and the choice of its treatment is very important for the survival rate and prognosis of patients. Traditional open surgery is the main treatment for ovarian cancer, but it has the disadvantages of big trauma and slow recovery. With the continuous development of minimally invasive technology, minimally invasive laparoscopic surgery under general anesthesia has been gradually applied to the treatment of ovarian cancer because of its advantages of less trauma and quick recovery. However, the efficacy and safety of minimally invasive laparoscopic surgery under general anesthesia in the treatment of ovarian cancer are still controversial. AIM: To explore the efficacy and safety of general anesthesia minimally invasive surgery in the treatment of ovarian cancer. METHODS: The clinical data of 90 patients with early ovarian cancer in our hospital were analyzed retrospectively. According to the different surgical treatment methods, patients were divided into study group and control group (45 cases in each group). The study group received minimally invasive laparoscopic surgery under general anesthesia for ovarian cancer, while the control group received traditional open surgery for ovarian cancer. The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30), clinical efficacy and safety of the two groups were compared. RESULTS: The intraoperative blood loss, length of hospital stay, postoperative gas evacuation time, and postoperative EORTC QLQ-C30 score of the study group were significantly better than those of the control group (P < 0.05). The incidence of postoperative complications in the study group was significantly lower than in the control group (P < 0.05). The two groups had no significant differences in the preoperative adrenocorticotropic hormone (ACTH), androstenedione (AD), cortisol (Cor), cluster of differentiation 3 positive (CD3+), and cluster of differentiation 4 positive (CD4+) indexes (P > 0.05). In contrast, postoperatively, the study group's ACTH, AD, and Cor indexes were lower, and the CD3+ and CD4+ indexes were higher than those in the control group (P < 0.05). CONCLUSION: Minimally invasive laparoscopic surgery under general anesthesia in patients with early ovarian cancer can significantly improve the efficacy and safety, improve the short-term prognosis and quality of life of patients, and is worth popularizing.

6.
Adv Healthc Mater ; : e2401113, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686849

RESUMEN

Atherosclerosis (AS) management typically relies on therapeutic drug interventions, but these strategies typically have drawbacks, including poor site specificity, high systemic intake, and undesired side effects. The field of cell membrane camouflaged biomimetic nanomedicine offers the potential to address these challenges thanks to its ability to mimic the natural properties of cell membranes that enable enhanced biocompatibility, prolonged blood circulation, targeted drug delivery, and evasion of immune recognition, ultimately leading to improved therapeutic outcomes and reduced side effects. In this study, a novel biomimetic approach is developed to construct the M1 macrophage membrane-coated nanoprodrug (MM@CD-PBA-RVT) for AS management. The advanced MM@CD-PBA-RVT nanotherapeutics are proved to be effective in inhibiting macrophage phagocytosis and facilitating the cargo delivery to the activated endothelial cells of AS lesion both in vitro and in vivo. Over the 30-day period of nanotherapy, MM@CD-PBA-RVT is capable of significantly inhibiting the progression of AS, while also maintaining a favorable safety profile. In conclusion, the biomimetic MM@CD-PBA-RVT shows promise as feasible drug delivery systems for safe and effective anti-AS applications.

7.
Angew Chem Int Ed Engl ; : e202404177, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634766

RESUMEN

Long-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remains unexplored. Here we present a strategy to probe and unveil energy-funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices through Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96 eV, with the corresponding trap density varying between 2.38×105 and 1.34×107 cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30 days. It allows tailorable emission wavelength within the range of 520-580 nm and fine-tuning of thermally-stimulated temperature between 313-403 K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insights into the correlation of radioluminescence dynamics with energy-funneling kinetics, thereby contributing to the advancement of high-energy nanophotonic applications.

8.
Front Genet ; 15: 1360138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463170

RESUMEN

Background: Litchi (Litchi chinensis) is an important sub-tropical fruit in the horticulture market in China. Breeding for improved fruit characteristics is needed for satisfying consumer demands. Budding is a sustainable method for its propagation. During our ongoing breeding program, we observed a litchi mutant with flat leaves and sharp fruit peel cracking in comparison to the curled leaves and blunt fruit peel cracking fruits of the mother plant. Methods: To understand the possible molecular pathways involved, we performed a combined metabolome and transcriptome analysis. Results: We identified 1,060 metabolites in litchi leaves and fruits, of which 106 and 101 were differentially accumulated between the leaves and fruits, respectively. The mutant leaves were richer in carbohydrates, nucleotides, and phenolic acids, while the mother plant was rich in most of the amino acids and derivatives, flavonoids, lipids and organic acids and derivatives, and vitamins. Contrastingly, mutant fruits had higher levels of amino acids and derivatives, carbohydrates and derivatives, and organic acids and derivatives. However, the mother plant's fruits contained higher levels of flavonoids, scopoletin, amines, some amino acids and derivatives, benzamidine, carbohydrates and derivatives, and some organic acids and derivatives. The number of differentially expressed genes was consistent with the metabolome profiles. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enriched gene expressions showed consistent profiles as of metabolome analysis. Conclusion: These results provide the groundwork for breeding litchi for fruit and leaf traits that are useful for its taste and yield.

9.
Huan Jing Ke Xue ; 45(2): 813-825, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471920

RESUMEN

Chaohu lake is a key water body for water pollution prevention and treatment in our country. However, it has been at a higher eutrophication level recently. Here, the surface water and groundwater in the Dianbu River Basin, a secondary tributary of Chaohu Lake, were taken as the research object. In order to test the hydrochemical composition and hydrogen and oxygen isotope values of different water bodies, 30 groups of surface water samples, 36 groups of groundwater samples, 16 groups of hydrogen and oxygen stable isotope samples, and 18 groups of groundwater hydrogen and oxygen stable isotope samples were collected in August 2021 (wet season), November 2021 (normal season), and February 2022 (dry season). The seasonal and spatial variation characteristics were analyzed to explore the hydrochemical characteristics and formation mechanism of water bodies by means of mathematical statistics, Piper triangular diagram, Gibbs figures, and ion ratios. The following results were obtained: ① precipitation was the main source of surface water and groundwater in Dianbu River Basin, and the evaporation fractionation effect of surface water was more significant than that of groundwater. At different periods, the surface water was more enriched with stable isotopes of hydrogen and oxygen than groundwater. The stable isotopes of hydrogen and oxygen in water showed seasonal variation, relative enrichment in the wet season, and depletion in the dry season. ② Both surface water and groundwater in the Dianbu River Basin were weakly alkaline, and the concentration of ions in surface water was significantly lower than that in groundwater. Ca2+ and Na+ were the main cations in surface water, Ca2+ was the main cation in groundwater, and the dominant anion in all water was HCO3-. The hydrochemical typology of surface water was mainly HCO3·Cl-Na·Ca, and that of groundwater was mainly HCO3-Na·Ca. ③ The concentrations of the main hydrochemical indexes of surface water and groundwater showed certain seasonal and spatial differences. From the wet season to the dry season, the concentrations of TDS, K+, Na+, Ca2+, Mg2+, Cl-, and SO42- in surface water showed an increasing trend on the whole. The concentrations of Na+, Ca2+, and Mg2+ in groundwater showed little change but increased slightly, whereas the concentrations of Cl-, SO42-, and NO3- showed an increasing trend on the whole. The concentrations of Cl-, SO42-, and NO3- in the water showed relatively large seasonal fluctuations. From upstream to downstream, the concentrations of the main hydrochemical indexes in surface water first decreased and then increased, among which the concentration of NO3- increased the most. The concentrations of the main hydrochemical indexes of groundwater in the direction of runoff changed little overall, but the concentration in the discharge area was higher than that in the recharge area. ④ The formation of hydrochemical characteristics of the water was mainly controlled by water-rock interaction but was also influenced by human factors. The water-rock action was mainly the weathering dissolution of silicate rock, salt rock, and carbonate rock. Man-made pollutants such as sewage from a sewage treatment plant, domestic sewage, and feces had obviously changed the hydrochemical characteristics of the local water. ⑤ Compared with that in 2016, the concentration of NO3- in surface water showed a certain degree of reduction. The nitrogen pollution control work carried out by the local government had achieved certain results, but it was still necessary to strengthen the pollution prevention and control of sewage and feces in the downstream of the Dianbu River, some tributaries (such as the Dingguang River and Maqiao River), and some residential areas.

10.
J Agric Food Chem ; 72(12): 6360-6371, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38489847

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) represents the most prevalent type of chronic liver disease, spanning from simple steatosis to nonalcoholic steatohepatitis (NASH). Corn oligopeptide (CP) is a functional peptide known for its diverse pharmacological effects on metabolism. In this study, we evaluated the protective activity of CP against fatty liver disease. Oral administration of CP significantly reduced body weight gain by 2.95%, serum cholesterol by 22.54%, and liver injury, as evidenced by a reduction of 32.19% in serum aspartate aminotransferase (AST) and 49.10% in alanine aminotransferase (ALT) levels in mice subjected to a high-fat diet (HFD). In a streptozotocin/HFD-induced NASH mouse model, CP attenuated body weight gain by 5.11%, liver injury (with a 34.15% decrease in AST and 11.43% decrease in ALT), and, to some extent, liver inflammation and fibrosis. Proteomic analysis revealed the modulation of oxidative phosphorylation and sirtuin (SIRT) signaling pathways by CP. Remarkably, CP selectively inhibited the hepatic expression of mitochondrial SIRT3 and SIRT5 in both HFD and NASH models. In summary, CP demonstrates a preventive effect against metabolic-stress-induced NAFLD progression by modulating oxidative stress and the SIRT signaling pathway, suggesting the potential of CP as a therapeutic agent for the treatment of NAFLD and advanced-stage NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Zea mays/metabolismo , Proteómica , Hígado/metabolismo , Transducción de Señal , Aumento de Peso , Dieta Alta en Grasa , Oligopéptidos/metabolismo , Sirtuinas/metabolismo , Ratones Endogámicos C57BL
11.
Adv Healthc Mater ; : e2400318, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408212

RESUMEN

Drug-resistant bacterial infection of cutaneous wounds causes great harm to the human body. These infections are characterized by a microenvironment with recalcitrant bacterial infections, persistent oxidative stress, imbalance of immune regulation, and suboptimal angiogenesis. Treatment strategies available to date are incapable of handling the healing dynamics of infected wounds. A Schiff base and borate ester cross-linked hydrogel, based on phenylboronic acid-grafted chitosan (CS-PBA), dibenzaldehyde-grafted poly(ethylene glycol), and tannic acid (TA), is fabricated in the present study. Customized phenylboronic acid-modified zinc oxide nanoparticles (ZnO) are embedded in the hydrogel prior to gelation. The CPP@ZnO-P-TA hydrogel effectively eliminates methicillin-resistant Staphylococcus aureus (MRSA) due to the pH-responsive release of Zn2+ and TA. Killing is achieved via membrane damage, adenosine triphosphate reduction, leakage of intracellular components, and hydrolysis of bacterial o-nitrophenyl-ß-d-galactopyranoside. The CPP@ZnO-P-TA hydrogel is capable of scavenging reactive oxygen and nitrogen species, alleviating oxidative stress, and stimulating M2 polarization of macrophages. The released Zn2+ and TA also induce neovascularization via the PI3K/Akt pathway. The CPP@ZnO-P-TA hydrogel improves tissue regeneration in vivo by alleviating inflammatory responses, stimulating angiogenesis, and facilitating collagen deposition. These findings suggest that this versatile hydrogel possesses therapeutic potential for the treatment of MRSA-infected cutaneous wounds.

12.
Int J Cancer ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380807

RESUMEN

The proto-oncogene MYCN expression marked a cancer stem-like cell population in hepatocellular carcinoma (HCC) and served as a therapeutic target of acyclic retinoid (ACR), an orally administered vitamin A derivative that has demonstrated promising efficacy and safety in reducing HCC recurrence. This study investigated the role of MYCN as a predictive biomarker for therapeutic response to ACR and prognosis of HCC. MYCN gene expression in HCC was analyzed in the Cancer Genome Atlas and a Taiwanese cohort (N = 118). Serum MYCN protein levels were assessed in healthy controls (N = 15), patients with HCC (N = 116), pre- and post-surgical patients with HCC (N = 20), and a subset of patients from a phase 3 clinical trial of ACR (N = 68, NCT01640808). The results showed increased MYCN gene expression in HCC tumors, which positively correlated with HCC recurrence in non-cirrhotic or single-tumor patients. Serum MYCN protein levels were higher in patients with HCC, decreased after surgical resection of HCC, and were associated with liver functional reserve and fibrosis markers, as well as long-term HCC prognosis (>4 years). Subgroup analysis of a phase 3 clinical trial of ACR identified serum MYCN as the risk factor most strongly associated with HCC recurrence. Patients with HCC with higher serum MYCN levels after a 4-week treatment of ACR exhibited a significantly higher risk of recurrence (hazard ratio 3.27; p = .022). In conclusion, serum MYCN holds promise for biomarker-based precision medicine for the prevention of HCC, long-term prognosis of early-stage HCC, and identification of high-response subgroups for ACR-based treatment.

13.
Small ; : e2310665, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386292

RESUMEN

The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2 SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2 SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example.

14.
Int J Biol Macromol ; 263(Pt 1): 130249, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368994

RESUMEN

Persistent over-oxidation, inflammation and bacterial infection are the primary reasons for impaired wound repairing in diabetic patients. Therefore, crucial strategies to promote diabetic wound repairing involve suppressing the inflammatory response, inhibiting bacterial growth and decreasing reactive oxygen species (ROS) within the wound. In this work, we develop a multifunctional nanomedicine (HA@Cur/Cu) designed to facilitate the repairing process of diabetic wound. The findings demonstrated that the synthesized infinite coordination polymers (ICPs) was effective in enhancing the bioavailability of curcumin and improving the controlled drug release at the site of inflammation. Furthermore, in vitro and in vivo evaluation validate the capacity of HA@Cur/Cu to inhibit bacterial growth and remove excess ROS and inflammatory mediators, thereby significantly promoting the healing of diabetic wound in mice. These compelling findings strongly demonstrate the enormous promise of this multifunctional nanomedicine for the treatment of diabetic wound.


Asunto(s)
Curcumina , Diabetes Mellitus , Humanos , Ratones , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Cicatrización de Heridas , Ácido Hialurónico/farmacología , Nanomedicina , Especies Reactivas de Oxígeno/farmacología , Hidrogeles/farmacología , Inflamación , Antibacterianos/farmacología
15.
Nano Lett ; 24(8): 2503-2510, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38258747

RESUMEN

X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.

16.
MycoKeys ; 101: 191-232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283721

RESUMEN

Whilst conducting surveys of lignicolous microfungi in Yunnan Province, we collected a large number of taxa that resemble Montagnula (Didymosphaeriaceae, Pleosporales). Our phylogenetic study on Montagnula involved analysing sequence data from ribosomal RNA genes (nc18S, nc28S, ITS) and protein-coding genes (rpb2, tef1-α). We present a biphasic approach (morphological and molecular phylogenetic evidence) that supports the recognition of four new species in Montagnula viz., M.lijiangensis, M.menglaensis, M.shangrilana and M.thevetiae. The global diversity of Montagnula is also inferred from metabarcoding data and published records based on field observations. Metabarcoding data from GlobalFungi and field observations provided insights into the global diversity and distribution patterns of Montagnula. Studies conducted in Asia, Australia, Europe, and North America revealed a concentration of Montagnula species, suggesting regional variations in ecological preferences and distribution. Montagnula species were found on various substrates, with sediments yielding a high number of sequences. Poaceae emerged as a significant contributor, indicating a potential association between Montagnula species and grasses. Culture-based investigations from previously published data revealed Montagnula species associations with 105 plant genera (in 45 plant families), across 55 countries, highlighting their wide ecological range and adaptability. This study enhances our understanding of the taxonomy, distribution, and ecological preferences of Montagnula species. It emphasizes their role in the decomposition of organic matter in grasslands and savannah systems and suggests further investigation into their functional roles in ecosystem processes. The global distribution patterns and ecological interactions of Montagnula species underscore the need for continued research and conservation efforts.

17.
Ecotoxicol Environ Saf ; 269: 115788, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056118

RESUMEN

The contamination of arable land with heavy metals, such as Cd, is a serious concern worldwide. Intercropping with Cd accumulators can be used for efficient safe crop production and phytoremediation of Cd-contaminated soil. However, the effect of intercropping on Cd uptake by main crops and accumulators varies among plant combinations. Rhizosphere interaction may mediate Cd uptake by intercropped plants, but the mechanism is unclear. Thus, in the present study, we aimed to examine the effect of rhizosphere interaction on Cd uptake by intercropping rice (Oryza sativa L.) with mugwort (Artemisia argyi Levl. et Vant.) in Cd-contaminated paddy soil. We grew O. sativa and A. argyi in pots designed to allow different levels of interaction: complete root interaction (no barrier), partial root interaction (nylon mesh barrier), and no root interaction (plastic film barrier). Our results indicated that both complete and partial root interaction increased the shoot and root mass of A. argyi, but did not decrease the shoot, root, and grain mass of O. sativa. Interspecific root interaction significantly increased the Cd content in the shoots, roots, and grains of O. sativa and the shoots of A. argyi. Increased content of total organic acids in the rhizosphere, which increased the content of available Cd, was a possible mechanism of increased Cd uptake in both plants under interspecific root interaction. Our findings demonstrate that an intercropping system can extract more Cd from contaminated soil than a monocropping system of either A. argyi or O. sativa. However, the intercropping system did not facilitate safe crop production because it substantially increased grain Cd content in O. sativa.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo , Raíces de Plantas/química , Grano Comestible/química , Biodegradación Ambiental , Contaminantes del Suelo/análisis
18.
Environ Res ; 244: 117934, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109957

RESUMEN

Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at µg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.


Asunto(s)
Antibacterianos , Tianfenicol , Tianfenicol/análogos & derivados , Animales , Antibacterianos/toxicidad , Tianfenicol/toxicidad , Cloranfenicol/farmacología , Bacterias , Mamíferos
19.
Eur J Pharmacol ; 964: 176261, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141938

RESUMEN

Endometriosis is a frequent, chronic, estrogen-dependent and inflammatory gynecological disease leading to pain and infertility. Clinical and metabolic studies reveal that patients with endometriosis are susceptible to hyperlipemia and lipid dysfunction, putting them at ascending risk of cardiovascular diseases. Statins constitute a group of cholesterol-lowering drugs with pleiotropic effects. A plethora of researches have proved their ability to inhibit the growth of ectopic lesions in endometriosis. However, concerns exist about their possible adverse effects on ovarian function. This study aimed to investigate the possible effect of atorvastatin on the ovarian endocrine function and fertility capacity in the prevention and treatment of endometriosis. Here, 5 mg/kg atorvastatin was intraperitoneally injected to the endometriosis mice once a day for consecutive fourteen days during and after the development of endometriotic implants. The results indicated that atorvastatin not only led to regression of the ectopic lesions, but also caused no discernible harm to the ovary for both the preventive and the therapeutic models. In addition, it elicited a protective effect on the ovarian reserve and fertility possibly by reducing inflammation in the ovary. Hence, atorvastatin could be a promising drug for endometriosis prevention and treatment.


Asunto(s)
Endometriosis , Humanos , Femenino , Ratones , Animales , Endometriosis/tratamiento farmacológico , Endometriosis/prevención & control , Endometriosis/metabolismo , Ovario , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Fertilidad , Estrógenos/farmacología
20.
Adv Sci (Weinh) ; 11(6): e2307441, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145362

RESUMEN

Multifunctional nanomedicines have been used in atherosclerosis theranostics. Herein, phosphatidylserine-specific peptide CLIKKPF-functionalized carbon-dots nanozymes (pep-CDs) are reported for specific and efficient noninvasive theranostic of atherosclerosis. Surprisingly, pep-CDs are discovered to not only inherit the inherent properties of carbon dots (CDs), including deep-red fluorescence emission, photoacoustic response, and superoxide dismutase-like antioxidant, and anti-inflammatory activities but also possess the ability to target recognition on foam cells and target localization on plaques due to the specific interaction of CLIKKPF with phosphatidylserine on the membrane outer surface of foam cells. Furthermore, the target localization effect of pep-CDs vastly promotes the efficient accumulation of CDs in plaque, thus maximizing AS theranostic of CDs. Interestingly, pep-CDs could be developed to image plaque for monitoring atherosclerosis pathological progression in real-time resulting from the different content of foam cells. This work on the one hand proposes a simple and feasible strategy to construct theranostic nanoplatform employing only a single functional unit (i.e., multifunctional CDs) to simplify the fabrication procedure, on the other hand, highlights the advantages of the active target auxiliary mode for atherosclerosis theranostic applications.


Asunto(s)
Aterosclerosis , Carbono , Humanos , Carbono/química , Fosfatidilserinas , Imagen Óptica , Medicina de Precisión , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...