Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 446: 130678, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608578

RESUMEN

Taking Beijing-Tianjin-Hebei (BTH) with severe atmospheric mercury (Hg) and PM2.5 pollution as a typical region, this study clarified the characteristics and transboundary transport of atmospheric Particulate Bound Mercury (PBM2.5) affected by the East Asian monsoon. Five sampling sites were conducted in rural, suburban, urban, industrial, and coastal areas of BTH from northwest to southeast along the East Asian monsoon direction. PBM2.5 showed increasing concentrations from northwest to southeast and negative δ202Hg values, indicating significant contributions from anthropogenic sources. However, the mean Δ199Hg values of PBM2.5 at the five sites were significantly positive, probably triggered by the photoreduction of Hg(II) during long-range transport driven by the East Asian monsoon. Apart from local anthropogenic emissions as the primary sources, the transboundary transport of PBM2.5, driven by west and northwest air masses originating in Central Asia and Russia, contributed significantly to the PBM2.5 pollution of BTH. Moreover, these air masses reaching BTH would carry elevated PBM2.5 concentrations further transported to the ocean by the East Asian monsoon. In contrast, the southeast air masses transported from the ocean by the East Asian monsoon in summer diluted inland PBM2.5 pollution. This study provides insight into the atmospheric Hg circulation affected by the East Asian monsoon.

2.
Environ Pollut ; 301: 119029, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217140

RESUMEN

Although the utilization of biosolids in agricultural lands is widely considered as an effective way to improve resource reuse, the presence of antibiotic resistance genes (ARGs) severely restricts biosolids returning to fields. A 12-year long-term experiment with different biosolids application rates (from 0 to 36 t ha-1 yr-1) was conducted to study the effect of biosolids application on shaping ARGs in soil. Biosolids application significantly increased ARGs abundance in the soil, except for MBS treatment (9 t ha-1 yr-1 biosolids application). The abundance of ARGs in soil did not increase linearly with the dose of biosolids applied, but they were significantly (P < 0.05) positively correlated. A total of 173 subtypes were detected, among them mobile genetic elements (MGEs), aminoglycoside, and multidrug resistance genes were the most dominant types. Except for MBS treatment, most of the ARGs detected were enriched in amended soils after long-term continuous biosolids application. Specifically, tetPA, sul1, mefA, and IS6100 were highly enriched in all amended soils. In addition, biosolids application increased soil nutrients and heavy metals, and changed the soil microbial community, all of which affected ARGs formation. But MGEs may be a greater factor for shaping ARGs profiles than soil properties. Overall, controlling the rate of biosolid application is the key to reducing the accumulation and horizontal transfer of ARGs in soils.


Asunto(s)
Antibacterianos , Suelo , Antibacterianos/farmacología , Biosólidos , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol , Microbiología del Suelo
3.
Environ Pollut ; 266(Pt 2): 115304, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32805596

RESUMEN

The excessive application of manure has caused a high load of phosphorus (P) in the North China Plain. Having an understanding of how manure application affects soil P changes and its transport between different soil layers is crucial to reasonably apply manure P and reduce the associated loss. Based on our 28-year field experiments, the compositions and changes of P species and the risk of P loss under excessive manure treatments were investigated, i.e., no fertilizer (CK), mineral fertilizer NPK (NPK), NPK plus 22.5 t ha-1 yr-1 swine manure (LMNPK), and NPK plus 33.75 t ha-1 yr-1 swine manure (HMNPK). Manure application increased the content of orthophosphate and myo-inositol hexaphosphate (myo-IHP), especially the orthophosphate content exceeded 95%. The amount of orthophosphate in manure and the conversion of organic P to inorganic P in soil were the main reasons for the increased soil orthophosphate. Compared with NPK treatment, soil microbial biomass phosphorus and alkaline phosphatase activity in LMNPK and HMNPK treatments significantly increased. Compared with NPK treatment, a high manure application rate under HMNPK treatment could increase the abundance of organic P-mineralization gene phoD by 60.0% and decrease the abundance of inorganic P-solubilization gene pqqC by 45.9%. Due to the continuous additional manure application, soil P stocks significantly increased under LMNPK and HMNPK treatments. Furthermore, part of the P has been leached to the 60-80 cm soil layer. Segmented regression analysis indicated that CaCl2-P increased sharply when Olsen-P was higher than 25.1 mg kg-1, however the content of Olsen-P did not exceed this value until 10 years after consecutive excessive manure application. In order to improve soil P availability and decrease the risk of P loss, the manure application rate should vary over time based on soil physicochemical conditions, plants requirements, and P stocks from previous years.


Asunto(s)
Estiércol , Suelo , Agricultura , Animales , China , Fertilizantes , Nitrógeno/análisis , Fósforo/análisis , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...