Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(40): 29254-29259, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39285870

RESUMEN

Fumonisin B1 (FB1) is naturally present in the environment and can easily contaminate packaged foods during processing, storage and transportation, thus posing a threat to human health. We have developed an enzyme-free FB1 detector for the detection of packaged foods, which provides rapid and sensitive detection of FB1 in food. Gold nanoparticles (AuNPs; 5-10 nm) were uniformly dispersed on screen-printed electrodes, which acted as an excellent catalytic oxidizer. The surface structure of the modified electrode was characterized using scanning electron microscope and X-ray photoelectron spectroscopy. Differential pulse voltammetry demonstrated a good linear electrochemical response towards FB1 at concentrations ranging from 1 ng L-1 to 1 mg L-1 with a detection limit of 0.08 ng L-1. We employed the AuNPs-SPE sensor to detect FB1-spiked packaged meat products achieving recovery rates ranging from 89.7% to 113.3%.

2.
Food Chem X ; 23: 101666, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39170070

RESUMEN

Zearalenone (ZEN) contamination in cereals poses a serious threat to human and animal health, yet existing rapid test methods still suffer from poor stability and low sensitivity. The studied sensor reduces inspection time while enabling applications for on-site grain inspection. Specifically, a ZEN detector that can sensitively detect ZEN content in grains was developed. Ion implantation is an effective method for modifying screen-printed electrodes (SPEs). Gold nanoparticles (AuNPs; 5-10 nm) were uniformly implanted using screen-printed electrodes as a catalytic oxidation medium to generate an electrochemical sensor. The surface structure of the modified electrode was characterized using scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that differential pulse voltammetry had good linear electrochemical response to ZEN at 10 ng/kg to 10 mg/kg, with a detection limit of 1.1 ng/kg. We used AuNP-SPE sensors to detect ZEN in grain samples such as maize and oats.

3.
Antioxidants (Basel) ; 13(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38671916

RESUMEN

Oxidative stress causes gut dysfunction and is a contributing factor in several intestinal disorders. Intestinal epithelial cell survival is essential for maintaining human and animal health under oxidative stress. 18beta-Glycyrrhetinic acid (GA) is known to have multiple beneficial effects, including antioxidant activity; however, the underlying molecular mechanisms have not been well established. Thus, the present study evaluated the therapeutic effects of GA on H2O2-induced oxidative stress in intestinal porcine epithelial cells. The results showed that pretreatment with GA (100 nM for 16 h) significantly increased the levels of several antioxidant enzymes and reduced corresponding intracellular levels of reactive oxidative species and malondialdehyde. GA inhibited cell apoptosis via activating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, as confirmed by RNA sequencing. Further analyses demonstrated that GA upregulated the phosphorylation levels of PI3K and Akt and the protein level of B cell lymphoma 2, whereas it downregulated Cytochrome c and tumor suppressor protein p53 levels. Moreover, molecular docking analysis predicted the binding of GA to Vasoactive intestinal peptide receptor 1, a primary membrane receptor, to activate the PI3K/Akt signaling pathway. Collectively, these results revealed that GA protected against H2O2-induced oxidative damage and cell apoptosis via activating the PI3K/Akt signaling pathway, suggesting the potential therapeutic use of GA to alleviate oxidative stress in humans/animals.

4.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636715

RESUMEN

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , Macrófagos , Selenio , Tricotecenos , Animales , Tricotecenos/toxicidad , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Selenio/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo
5.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540959

RESUMEN

Silkie chicken, an important chicken breed with high medicinal and nutritional value, has a long history of being used as a dietary supplement in China. However, the compounds with health-promoting effects in Silkie chickens remain unclear. In the present study, we conducted a comprehensive analysis of metabolic and lipidomic profiles to identify the characteristic bioactive compounds in Silkie chickens, using a common chicken breed as control. The results showed that the levels of 13 metabolites including estradiol, four lipid subclasses including cardiolipin (CL), eight lipid molecules, and three fatty acids including docosahexaenoic acid (C22:6) were significantly increased in Silkie chickens, which have physiological activities such as resisting chronic diseases and improving cognition. These characteristic bioactive compounds have effects on meat quality characteristics, including improving its water-holding capacity and umami taste and increasing the content of aromatic compounds and phenols. The differentially expressed genes (DEGs) between the two chicken breeds revealed the regulatory network for these characteristic bioactive compounds. Fifteen DEGs, including HSD17B1, are involved in the synthesis of characteristic metabolites. Eleven DEGs, including ELOVL2, were involved in the synthesis and transport of characteristic lipids and fatty acids. In summary, we identified characteristic bioactive compounds in Silkie chickens, and analyzed their effects on meat quality characteristics. This study provided important insight into Silkie chicken meat as a functional food.

6.
Food Chem X ; 21: 101245, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38426078

RESUMEN

A wide range of research has illustrated that carotenoids play a key role in human health through their versatile beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are obtained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. The summary of these important nutrients in livestock products will provide references for animal husbandry and human health.

7.
Toxicology ; 501: 153689, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040082

RESUMEN

Deoxynivalenol (DON) is a significant Fusarium toxin that has gained global attention due to its high frequency of contamination in food and feed. It was reported to have hepatotoxicity, immunotoxicity, and reproduction toxicity in organs. On the other hand, Selenomethionine (SeMet) was proven to have anti-oxidation, tissue repairing, immunity improvement, and antifungal mycotoxin infection functions. However, the molecular mechanism by which SeMet alleviates DON damage is not yet clear. C57BL/6 mice were randomly divided into three groups, Se-A and Se-A+DON were fed with a diet containing 0.2 mg/kg Se whereas Se-S+DON were fed with a diet of 1.0 mg/kg Se. After feeding for four weeks, the mice were gavaged for 21 days with DON (2.0 mg/kg BW) or ultrapure water once per day. In the present study, we showed that SeMet significantly decreased the lipid peroxidation product malondialdehyde, and increased activities of antioxidant enzymes superoxide dismutase and total antioxidant capacity after DON exposure. In addition, our investigation revealed that SeMet regulated pathways related to lipid synthesis and metabolisms, and effectively mitigated DON-induced liver damage. Moreover, we have discovered that SeMet downregulation of N-acylethanolamine and HexCer accumulation induced hepatic lipotoxicity. Further study showed that SeMet supplementation increased protein levels of glutathione peroxidase 4 (GPX4), peroxisome proliferator-activated receptor γ (PPARγ), nuclear erythroid 2-related factor 2 (Nrf2), and upregulated target proteins, indicating suppression of oxidative stress in the liver. Meanwhile, we found that SeMet significantly reduced the DON-induced protein abundances of Bcl2, Beclin1, LC3B and proteins related to ferroptosis (Lpcat3, and Slc3a2), and downregulation of Slc7a11. In conclusion, SeMet protected the liver from damage by enhancing the Nrf2/PPARγ-GPX4-ferroptosis pathway, inhibiting lipid accumulation and hepatic lipotoxicity. The findings of this study indicated that SeMet has a positive impact on liver health by improving antioxidant capacity and relieving lipotoxicity in toxin pollution.


Asunto(s)
Ferroptosis , Selenometionina , Animales , Ratones , Selenometionina/farmacología , Selenometionina/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , PPAR gamma/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Hígado , Lípidos
8.
Poult Sci ; 103(2): 103286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38100949

RESUMEN

In this study, we evaluated the enrichment efficiency of lutein in eggs and its function in preventing fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Five groups of laying hens (65 wk old) were fed basal diets supplemented with 0, 30, 60, 90, or 120 mg/kg of lutein. The supplementation period lasted 12 wk followed by 2 wk of lutein depletion in feed. The results revealed that lutein efficiently enriched the egg yolks and improved their color with a significant increase in relative redness (P < 0.001). Lutein accumulation increased in the egg yolk until day 10, then depletion reached a minimum level after 14 d. Overall, zeaxanthin content in all the groups was similar throughout the experimental period. However, triglycerides and total cholesterol were significantly decreased in the liver (P < 0.05) but not significantly different in the serum (P > 0.05). In the serum, the lipid metabolism enzyme acetyl-CoA synthetase was significantly reduced (P < 0.05), whereas dipeptidyl-peptidase 4 was not significantly different (P > 0.05), and there was no statistical difference of either enzyme in the liver (P > 0.05). Regarding oxidation and inflammation-related indexes, malondialdehyde, tumor necrosis factors alpha, interleukin-6, and interleukin-1 beta were decreased, whereas superoxide dismutase and total antioxidant capacity increased in the liver (P < 0.001). The function of lutein for the same indexes in serum was limited. It was concluded that lutein efficiently enriched the egg yolk of old laying hens to improve their color and reached the highest level on day 10 without being subject to a significant conversion into zeaxanthin. At the same time, lutein prevented liver steatosis in aged laying hens by exerting strong antioxidant and anti-inflammatory functions, but also through the modulation of lipid metabolism, which may contribute to reducing the incidence of FLHS in poultry.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Hígado Graso , Trastornos del Crecimiento , Defectos del Tabique Interventricular , Luteína , Femenino , Animales , Luteína/metabolismo , Antioxidantes/metabolismo , Pollos/metabolismo , Zeaxantinas/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Yema de Huevo/metabolismo , Hígado Graso/prevención & control , Hígado Graso/veterinaria , Alimentación Animal/análisis
9.
J Biomater Appl ; 38(4): 538-547, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37957029

RESUMEN

The biosafety and degradability of nanocarriers have always been an important factor restricting their entry into the clinic. In this work, a new nano-system was prepared by coating the photothermal effect of dopamine-doped mesoporous silica nanoparticles with carboxymethyl chitin through electrostatic interaction, and is further anchored with folic acid on the surface for targeted delivery of anti-cancer the drug doxorubicin (DOX). The nano-system (DOX@PDA/MSN-CMCS-FA) is simply modified CMCS after being loaded with DOX and has good dispersibility, and the drug loading is 10.6%. In vitro release studies have shown that the release rate of PDA/MSN-CMCS-FA is 40% in pH 5.5. Effective degradation is debris in 14 d acidic environments. Due to the anti-infrared photothermal effects of PDA doping and DOX chemotherapy, the semi-lethal concentration (IC50) of nanoparticles (NPS) was 14.95 µg/mL, which can inhibit tumor cell growth by photochemical synergistic treatment, and have certain degradation performance.


Asunto(s)
Dopamina , Doxorrubicina , Proliferación Celular , Doxorrubicina/farmacología , Ácido Fólico , Dióxido de Silicio
10.
Food Res Int ; 172: 113168, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689921

RESUMEN

Eggs are nutritious and highly valued by consumers. However, egg flavor varies greatly among different hen breeds. The present study used gas chromatography-olfactometry-mass spectrometry-based volatilomics to identify and compare volatile compounds in Taihe black-boned silky fowl (TS) and Hy-line Brown (HL) egg yolks. In addition, the relationships between the levels of different metabolites and lipids and flavor-associated differences were investigated using multiomics. Twenty-eight odorants in total were identified; among them, the levels of 3-methyl-butanal, 1-octen-3-ol, 2-pentylfuran, and (E, E)-2,4-decadienal differed significantly (P < 0.05) between TS and HL egg yolks. The difference in flavor compounds results in TS egg yolks having a stronger overall odor and flavor and a higher acceptance level than HL egg yolks. Metabolomic analysis revealed that 112 metabolites in the egg yolks were significantly different between the two breeds. Furthermore, these different metabolites in the egg yolks of both breeds were significantly enriched in phenylalanine, tyrosine, and tryptophan biosynthesis pathways and phenylalanine metabolism, alanine, aspartate, and glutamate metabolism pathways (P < 0.05), as identified by both metabolite set enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Lipidomic analysis revealed significant differences in the lipid subclasses, lipid molecules, and fatty acid profiles between the egg yolks from the two breeds. As a result, 48 lipid molecules had variable influence in projection values > 1 based on the partial least squares regression model, which may play a role in the differences in aroma characteristics between the two breeds through oxidative degradation of fatty acids. Our study revealed the metabolite, lipid, and volatility profiles of TS and HL egg yolks and may provide an important basis for improving egg flavor to satisfy various consumer preferences.


Asunto(s)
Pollos , Multiómica , Animales , Femenino , Carne , Huevos , Ácidos Grasos
11.
Poult Sci ; 102(11): 103046, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708765

RESUMEN

ß-Carotene, because it is the precursor of vitamin A and has versatile biological roles, has been applied as a feed additive in the poultry industry for a long time. In this study, we investigated the deposition and bioconversion of ß-carotene in laying hens. A total of 600 Hy-line brown laying hens at 40 wk of age were randomly divided into 5 dietary treatments, each group's dietary supplemental levels of ß-carotene were 0, 15, 30, 60, 120 mg/kg feed, and the vitamin A levels were all 8,000 IU/kg. After 14-wk trial, samples were collected, then carotenoids and different forms of vitamin A were detected using the novel method developed by our laboratory. We found that dietary ß-carotene treatment had no significant effects on laying hens' production performance and egg quality (P > 0.05), except the yolk color. The deposition of ß-carotene in the body gradually increased (P < 0.01) with the supplemental dose, whereas the contents of lutein and zeaxanthin decreased (P < 0.05). When the ß-carotene supplemental level was above 30 mg/kg in the diet, the different forms of vitamin A in in serum, liver, ovary, and yolks were increased compared to the control group (P < 0.05). However, these indicators decreased when the additional dose was 120 mg/kg. Moreover, the mRNA levels of the genes involved in ß-carotene absorption, bioconversion, and negative feedback regulation in duodenal mucosa and liver were upregulated after long-term feeding (P < 0.05). Histological staining of the ovaries indicated that the deposition of ß-carotene led to a lower rate of follicle atresia (P < 0.05), and this positive effects may be related to the antioxidant function of ß-carotene, which caused a reduction of oxidation products in the ovary (P < 0.05). Altogether, ß-carotene could accumulate in laying hens intactly and exert its biological functions in tissue. Meanwhile, a part of ß-carotene could also be converted into vitamin A but this bioconversion has an upper limit and negative feedback regulation.

12.
Anim Nutr ; 14: 315-333, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37635928

RESUMEN

The emergence of safe and functional eggs for consumer acceptance has gained focus. The production of carotenoid-enriched eggs has received attention due to its multifunctional biological properties. Nutritional modification of laying hens' diet can be a strategy to produce such eggs. This review presents the chemistry of carotenoids in nature and eggs, the accumulation process of carotenoids into eggs, and the functions of carotenoids in eggs. Our findings showed that carotenoids can be deposited into the egg and contribute to improving its nutritive value. The biosynthesis, chemical structure, and metabolism pathways of carotenoids lead to the deposition of carotenoids into eggs in their original or metabolized forms. Also, some factors modulate the efficiency of carotenoids in fowls before accumulation into eggs. Carotenoid-enriched eggs may be promising, ensuring the availability of highly nutritive eggs. However, further studies are still needed to comprehend the full metabolism process and the extensive functions of carotenoids in eggs.

13.
Fish Shellfish Immunol ; 136: 108736, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37054764

RESUMEN

This study aimed to elucidate the mechanisms of yellow mealworm (Tenebrio Molitor, YM) in intestinal immunity and health. Largemouth bass, as an enteritis modeling animal, were fed 3 diets containing YM at 0% (YM0), 24% (YM24) and 48% (YM48). The YM24 group had reduced levels of proinflammatory cytokines, while the YM48 group experienced a negative impact on intestinal health. Next, the Edwardsiella tarda (E. tarda) challenge test consisted of 4 YM diets, 0% (EYM0), 12% (EYM12), 24% (EYM24), and 36% (EYM36). The EYM0 and EYM12 groups exhibited intestinal damage and immunosuppression by the pathogenic bacteria. However, the above adverse phenotypes were attenuated in the EYM24 and EYM36 groups. Mechanistically, the EYM24 and EYM36 groups enhanced intestinal immunity in largemouth bass via activating NFκBp65 and further upregulating survivin expression to inhibit apoptosis. The results identify a protective mechanism of YM as a novel food or feed source by improving intestinal health.


Asunto(s)
Lubina , Tenebrio , Animales , Lubina/genética , Survivin , Dieta/veterinaria , Transducción de Señal
14.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108810

RESUMEN

Epimedium (EM), also known as barrenwort, is a traditional medicinal plant rich in isopentenyl flavonols, which have beneficial biological activities and can improve human and animal health, but its mechanism is still unclear. In this study, ultra-high-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF/MS) and ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) were used to analyse the main components of EM, and isopentenyl flavonols such as Epimedin A, B, and C as well as Icariin were the major components of EM. Meanwhile, broilers were selected as model animals to illuminate the mechanism of Epimedium isopentenyl flavonols (EMIE) on gut health. The results showed that supplementation with 200 mg/kg EM improved the immune response, increased cecum short-chain fatty acids (SCFAs) and lactate concentrations, and improved nutrient digestibility in broilers. In addition, 16S rRNA sequencing showed that EMIE altered the composition of cecal microbiome, increasing the relative abundance of beneficial bacteria (Candidatus Soleaferrea and Lachbospiraceae NC2004 group and Butyricioccus) and reducing that of harmful bacteria (UBA1819, Negativibacillus, and Eisenbergiella). Metabolomic analysis identified 48 differential metabolites, of which Erosnin and Tyrosyl-Tryptophan were identified as core biomarkers. Erosnin and tyrosyl-tryptophan are potential biomarkers to evaluate the effects of EMIE. This shows that EMIE may regulate the cecum microbiota through Butyricicoccus, with changes in the relative abundance of the genera Eisenbergiella and Un. Peptostreptococcaceae affecting the serum metabolite levels of the host. EMIE is an excellent health product, and dietary isopentenyl flavonols, as bioactive components, can improve health by altering the microbiota structure and the plasma metabolite profiles. This study provides the scientific basis for the future application of EM in diets.


Asunto(s)
Epimedium , Espectrometría de Masas en Tándem , Humanos , Animales , Espectrometría de Masas en Tándem/métodos , Triptófano , ARN Ribosómico 16S , Pollos/metabolismo , Flavonoides/química , Biomarcadores , Flavonoles
15.
Food Chem ; 414: 135376, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827774

RESUMEN

ß-Carotene, a provitamin A carotenoid, can be converted into vitamin A in animals' bodies, and can also be accumulated intactly in many animal products. In this study, supercritical fluid chromatography-tandem mass spectrometry was utilized to determine ß-carotene and different forms of vitamin A in eggs simultaneously. According to the results, ß-carotene contained in yolk reached a plateau after about 2 weeks of supplementation. With an increase in dietary supplement level, the amount of ß-carotene gradually increased, as well as slightly changing the yolk color. Moreover, the contents of retinoids including retinol, retinyl propionate, retinyl palmitate and retinyl stearate were also elevated in yolks with the ß-carotene additive levels; meanwhile, the lutein and zeaxanthin decreased. On the whole, ß-carotene in the diet of laying hens could be partially deposited in egg yolk, and the contents of vitamin A in yolk could be increased due to ß-carotene bioconversion.


Asunto(s)
Carotenoides , beta Caroteno , Femenino , Animales , beta Caroteno/análisis , Carotenoides/análisis , Vitamina A/análisis , Yema de Huevo/química , Espectrometría de Masas en Tándem , Pollos , Suplementos Dietéticos
16.
J Anim Sci Biotechnol ; 14(1): 14, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653873

RESUMEN

BACKGROUND: Growth-promoting antibiotics have been banned by law in the livestock and poultry breeding industry in many countries. Various alternatives to antibiotics have been investigated for using in livestock. Epimedium (EM) is an herb rich in flavonoids that has many beneficial effects on animals. Therefore, this study was planned to explore the potential of EM as a new alternative antibiotic product in animal feed. METHODS: A total of 720 1-day-old male broilers (Arbor Acres Plus) were randomly divided into six groups and fed basal diet (normal control; NC), basal diet supplemented with antibiotic (75 mg/kg chlortetracycline; CTC), and basal diet supplemented with 100, 200, 400 or 800 mg/kg EM extract for 6 weeks (EM100, EM200, EM400 and EM800 groups). The growth performance at weeks 3 and 6 was measured. Serum, intestinal tissue and feces were collected to assay for antioxidant indexes, intestinal permeability, lactic acid and short-chain fatty acids (SCFAs) profiles, microbial composition, and expression of intestinal barrier genes. RESULTS: The average daily feed intake in CTC group at 1-21 d was significantly higher than that in the NC group, and had no statistical difference with EM groups. Compared with NC group, average daily gain in CTC and EM200 groups increased significantly at 1-21 and 1-42 d. Compared with NC group, EM200 and EM400 groups had significantly decreased levels of lipopolysaccharide and D-lactic acid in serum throughout the study. The concentrations of lactic acid, acetic acid, propionic acid, butyric acid and SCFAs in feces of birds fed 200 mg/kg EM diet were significantly higher than those fed chlortetracycline. The dietary supplementation of chlortetracycline and 200 mg/kg EM significantly increased ileal expression of SOD1, Claudin-1 and ZO-1 genes. Dietary supplemented with 200 mg/kg EM increased the relative abundances of g_NK4A214_group and Lactobacillus in the jejunal, while the relative abundances of Microbacterium, Kitasatospora, Bacteroides in the jejunal and Gallibacterium in the ileum decreased. CONCLUSION: Supplementation with 200 mg/kg EM extract improved the composition of intestinal microbiota by regulating the core bacterial genus Lactobacillus, and increased the concentration of beneficial metabolites lactic acid and SCFAs in the flora, thereby improving the antioxidant capacity and intestinal permeability, enhancing the function of tight junction proteins. These beneficial effects improved the growth performance of broilers.

17.
J Anal Methods Chem ; 2022: 2184024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507106

RESUMEN

The enantioselective adsorption, degradation, and transformation of flumequine (FLU) enantiomers in sediment were investigated to elucidate the enantioselective environmental behaviors. The results of adsorption test showed that stereoselective differences of FLU enantiomers in sediment samples and the adsorbing capacity of S-(-)-FLU and R-(+)-FLU are higher than the racemate, and the pH values of the sediment determined the adsorption capacity. Enantioselective degradation behaviors were found under nonsterilized conditions and followed pseudo-first-order kinetic. The R-(+)-FLU was preferentially degraded, and there was significant enantioselectivity of the degradation of FLU. It can be concluded that the microorganism was the main reason for the stereoselective degradation in sediments. The physicochemical property of sediments, such as pH value and organic matter content, can affect the degradation rate of FLU. In addition, the process of transformation of FLU enantiomers in water-sediment system had enantioselective behavior, and R-(+)-FLU was preferential transformed. Meanwhile, the main metabolites of FLU in the sediment were decarboxylate and dihydroxylation products. This study contributes the evidence of comprehensively assessing the fate and risk of chiral FLU antibiotic and enantioselective behavior in the environment.

18.
Front Immunol ; 13: 1028418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569896

RESUMEN

The extracellular vesicles (EVs) in edible food have a typical saucer-like structure and are nanoparticles released by numerous cells. They have different components and interact with other biological samples in diverse ways. Therefore, these nanoparticles could be used to develop bioactives delivery nanoplatforms and anti-inflammatory treatments to meet the stringent demands of current clinical challenges. This review aims to summarize current researches into EVs from edible plants, particularly those that can protect siRNAs or facilitate drug transportation. We will discuss their isolation, characterization and functions, their regulatory effects under various physiological and pathological conditions, and their immune regulation, anti-tumor, regeneration, and anti-inflammatory effects. We also review advances in their potential application as bioactives carriers, and medicinal and edible plants that change their EVs compositions during disease to achieve a therapy propose. It is expected that future research on plant-derived EVs will considerably expand their application.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Plantas Comestibles , Vesículas Extracelulares/patología , Sistemas de Liberación de Medicamentos , Neoplasias/patología , Antiinflamatorios
19.
Nutr Res ; 108: 33-42, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36399975

RESUMEN

A genetic predisposition to hepatic steatosis may be associated with dietary patterns. We hypothesized that a common variant in human methylenetetrahydrofolate reductase (MTHFR 677C→T) was previously associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the relationship between the human MTHFR polymorphism and NAFLD using fructose-fed male C57BL/6 Mthfr+/+ and Mthfr+/- mice, a model for the human gene variant. Mice were fed an 8% fructose solution for 12 weeks. Mthfr+/- mice had significantly increased abdominal fat mass and hepatic triglyceride (TG) but displayed a similar liver mass when compared with Mthfr+/+ mice. Liver morphology showed that mild MTHFR deficiency induced liver lipid droplet deposition and inflammatory cell infiltration, suggesting accelerated lipid accumulation in the liver. Moreover, mild MTHFR deficiency increased hepatic xanthine oxidase activity and uric acid accumulation. Using untargeted lipidomics, we identified 116 differentially expressed lipids species in the liver of Mthfr+/- mice when compared with Mthfr+/+ animals. The most significant lipid increase was observed in 47 TGs, followed by 33 phosphatidylcholines in Mthfr+/- mice liver. When compared with Mthfr+/+ liver, 9 TGs were dramatically decreased in Mthfr+/- liver. These changes were associated with upregulated gene expressions related to triglyceride synthesis and storage. Thus, Mthfr+/- mice developed NAFLD disease. These findings suggested the Mthfr variant may be at an increased risk of liver steatosis on a fructose solution diet.


Asunto(s)
Metilenotetrahidrofolato Reductasa (NADPH2) , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Fructosa/efectos adversos , Fructosa/metabolismo , Hígado/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo , Ácido Úrico/metabolismo
20.
Metabolites ; 12(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36005631

RESUMEN

Metabolic fatty liver disease caused by high-starch diet restricted the intensive and sustainable development of carnivorous fish such as largemouth bass. In this study, the combination liver proteomic and lipidomic approach was employed to investigate the key signaling pathways and identify the critical biomarkers of fatty liver in largemouth bass. Joint analysis of the correlated differential proteins and lipids revealed nine common metabolic pathways; it was determined that FABP1 were significantly up-regulated in terms of transporting more triglycerides into the liver, while ABCA1 and VDAC1 proteins were significantly down-regulated in terms of preventing the transport of lipids and cholesterol out of the liver, leading to triglyceride accumulation in hepatocyte, eventually resulting in metabolic fatty liver disease. The results indicate that FABP1, ABCA1 and VDAC1 could be potential biomarkers for treating metabolic fatty liver disease of largemouth bass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA