Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Total Environ ; 915: 169971, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38211867

RESUMEN

Carbonates represent major sedimentary rocks in on the continental and oceanic crust of Earth and are often closely related to microbial activities. However, the origin of magnesium-containing carbonates, such as dolomites, has not yet been fully resolved and was debated for many years. In order to reveal the specific role of organic components and microbes on the precipitation of magnesium ions, different dolomitization experiments were carried out with various setups for the presence of eight amino acids and microbes. The Gibbs free energy for dehydration of Mg[6(H2O)]2+ and organic­magnesium complexes (OMC) at the calcite (101¯4) step edges were calculated by density functional theory (DFT). Combined results of X-ray diffraction (XRD), scanning electron microscope-energy disperse spectroscopy (SEM-EDS), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) indicated that magnesium ions were incorporated into the crystal lattice of calcite after calcite reacting with organic­magnesium solutions (OMS). Dolomite was formed on the surface of calcite under the presence of microbes. The Gibbs free energy barrier of asp, glu, gly, thr, tyr, lys, ser, and ala bonding to Mg[6(H2O)]2+ were 17.8, 16.2, 14.8, 16.5, 19.2, 14.5, 19.0, 17.0 kcal/mol, those are lower than that of the direct dehydration of Mg[6(H2O)]2+ of 19.45 kcal/mol. The Gibbs free barrier of OMC bonding at the acute step ([481¯] and [4¯41]) of 29.7/34.25 kcal/mol are lower than that of Mg[6(H2O)]2+ of 32.45/36.7 kcal/mol and the Gibbs free barrier of OMC bonding at the obtuse step ([481¯] and [4¯41]) of 42.07/47.6 kcal/mol are lower than that of Mg[6(H2O)]2+ of 55.4/60.34 kcal/mol. The enhancing effects of organic components and microbes on the precipitation of magnesium ions were collectively determined through experimental and theoretical calculation, thus setting up a new direction for future studies of dolomitization with a focus on microbial- mineral interactions.

2.
Med Image Anal ; 90: 102957, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716199

RESUMEN

Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to the quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and extensive clinical efforts for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Both quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage (https://atm22.grand-challenge.org/).


Asunto(s)
Enfermedades Pulmonares , Árboles , Humanos , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Pulmón/diagnóstico por imagen
3.
IEEE Trans Med Imaging ; 42(10): 2899-2911, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37079410

RESUMEN

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.


Asunto(s)
Cromosomas , Humanos , Cromosomas/genética , Cariotipificación
4.
Med Image Anal ; 83: 102627, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283199

RESUMEN

Recent evolution in deep learning has proven its value for CT-based lung nodule classification. Most current techniques are intrinsically black-box systems, suffering from two generalizability issues in clinical practice. First, benign-malignant discrimination is often assessed by human observers without pathologic diagnoses at the nodule level. We termed these data as "unsure-annotation data". Second, a classifier does not necessarily acquire reliable nodule features for stable learning and robust prediction with patch-level labels during learning. In this study, we construct a sure-annotation dataset with pathologically-confirmed labels and propose a collaborative learning framework to facilitate sure nodule classification by integrating unsure-annotation data knowledge through nodule segmentation and malignancy score regression. A loss function is designed to learn reliable features by introducing interpretability constraints regulated with nodule segmentation maps. Furthermore, based on model inference results that reflect the understanding from both machine and experts, we explore a new nodule analysis method for similar historical nodule retrieval and interpretable diagnosis. Detailed experimental results demonstrate that our approach is beneficial for achieving improved performance coupled with trustworthy model reasoning for lung cancer prediction with limited data. Extensive cross-evaluation results further illustrate the effect of unsure-annotation data for deep-learning based methods in lung nodule classification.


Asunto(s)
Pulmón , Humanos
5.
IEEE Trans Med Imaging ; 40(9): 2452-2462, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33970858

RESUMEN

Automated airway segmentation is a prerequisite for pre-operative diagnosis and intra-operative navigation for pulmonary intervention. Due to the small size and scattered spatial distribution of peripheral bronchi, this is hampered by a severe class imbalance between foreground and background regions, which makes it challenging for CNN-based methods to parse distal small airways. In this paper, we demonstrate that this problem is arisen by gradient erosion and dilation of the neighborhood voxels. During back-propagation, if the ratio of the foreground gradient to background gradient is small while the class imbalance is local, the foreground gradients can be eroded by their neighborhoods. This process cumulatively increases the noise information included in the gradient flow from top layers to the bottom ones, limiting the learning of small structures in CNNs. To alleviate this problem, we use group supervision and the corresponding WingsNet to provide complementary gradient flows to enhance the training of shallow layers. To further address the intra-class imbalance between large and small airways, we design a General Union loss function that obviates the impact of airway size by distance-based weights and adaptively tunes the gradient ratio based on the learning process. Extensive experiments on public datasets demonstrate that the proposed method can predict the airway structures with higher accuracy and better morphological completeness than the baselines.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Pulmón , Pulmón/diagnóstico por imagen
6.
IEEE Trans Med Imaging ; 40(6): 1603-1617, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33635786

RESUMEN

Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models are available at http://www.pami.sjtu.edu.cn/News/56.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Arterias , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X
7.
Med Phys ; 47(11): 5543-5554, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32502278

RESUMEN

PURPOSE: Volumetric pancreas segmentation can be used in the diagnosis of pancreatic diseases, the research about diabetes and surgical planning. Since manual delineation is time-consuming and laborious, we develop a deep learning-based framework for automatic pancreas segmentation in three dimensional (3D) medical images. METHODS: A two-stage framework is designed for automatic pancreas delineation. In the localization stage, a Square Root Dice loss is developed to handle the trade-off between sensitivity and specificity. In refinement stage, a novel 2.5D slice interaction network with slice correlation module is proposed to capture the non-local cross-slice information at multiple feature levels. Also a self-supervised learning-based pre-training method, slice shuffle, is designed to encourage the inter-slice communication. To further improve the accuracy and robustness, ensemble learning and a recurrent refinement process are adopted in the segmentation flow. RESULTS: The segmentation technique is validated in a public dataset (NIH Pancreas-CT) with 82 abdominal contrast-enhanced 3D CT scans. Fourfold cross-validation is performed to assess the capability and robustness of our method. The dice similarity coefficient, sensitivity, and specificity of our results are 86.21 ± 4.37%, 87.49 ± 6.38% and 85.11 ± 6.49% respectively, which is the state-of-the-art performance in this dataset. CONCLUSIONS: We proposed an automatic pancreas segmentation framework and validate in an open dataset. It is found that 2.5D network benefits from multi-level slice interaction and suitable self-supervised learning method for pre-training can boost the performance of neural network. This technique could provide new image findings for the routine diagnosis of pancreatic disease.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Abdomen , Páncreas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
8.
IEEE Trans Med Imaging ; 38(11): 2569-2581, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30908259

RESUMEN

Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosome's type and polarity using deep convolutional networks. The approach consists of one global-scale network (G-Net) and one local-scale network (L-Net). It follows three stages. The first stage is to learn both global and local features. We extract global features and detect finer local regions via the G-Net. By proposing a varifocal mechanism, we zoom into local parts and extract local features via the L-Net. Residual learning and multi-task learning strategies are utilized to promote high-level feature extraction. The detection of discriminative local parts is fulfilled by a localization subnet of the G-Net, whose training process involves both supervised and weakly supervised learning. The second stage is to build two multi-layer perceptron classifiers that exploit features of both two scales to boost classification performance. The third stage is to introduce a dispatch strategy of assigning each chromosome to a type within each patient case, by utilizing the domain knowledge of karyotyping. The evaluation results from 1909 karyotyping cases showed that the proposed Varifocal-Net achieved the highest accuracy per patient case (%) of 99.2 for both type and polarity tasks. It outperformed state-of-the-art methods, demonstrating the effectiveness of our varifocal mechanism, multi-scale feature ensemble, and dispatch strategy. The proposed method has been applied to assist practical karyotype diagnosis.


Asunto(s)
Cromosomas/ultraestructura , Interpretación de Imagen Asistida por Computador/métodos , Cariotipificación/métodos , Redes Neurales de la Computación , Algoritmos , Trastornos de los Cromosomas/diagnóstico por imagen , Femenino , Humanos , Masculino , Aprendizaje Automático Supervisado
9.
Med Phys ; 46(3): 1218-1229, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30575046

RESUMEN

PURPOSE: Segmentation of pulmonary nodules is critical for the analysis of nodules and lung cancer diagnosis. We present a novel framework of segmentation for various types of nodules using convolutional neural networks (CNNs). METHODS: The proposed framework is composed of two major parts. The first part is to increase the variety of samples and build a more balanced dataset. A conditional generative adversarial network (cGAN) is employed to produce synthetic CT images. Semantic labels are generated to impart spatial contextual knowledge to the network. Nine attribute scoring labels are combined as well to preserve nodule features. To refine the realism of synthesized samples, reconstruction error loss is introduced into cGAN. The second part is to train a nodule segmentation network on the extended dataset. We build a three-dimensional (3D) CNN model that exploits heterogeneous maps including edge maps and local binary pattern maps. The incorporation of these maps informs the model of texture patterns and boundary information of nodules, which assists high-level feature learning for segmentation. Residual unit, which learns to reduce residual error, is adopted to accelerate training and improve accuracy. RESULTS: Validation on LIDC-IDRI dataset demonstrates that the generated samples are realistic. The mean squared error and average cosine similarity between real and synthesized samples are 1.55 × 10 - 2 and 0.9534, respectively. The Dice coefficient, positive predicted value, sensitivity, and accuracy are, respectively, 0.8483, 0.8895, 0.8511, and 0.9904 for the segmentation results. CONCLUSIONS: The proposed 3D CNN segmentation framework, based on the use of synthesized samples and multiple maps with residual learning, achieves more accurate nodule segmentation compared to existing state-of-the-art methods. The proposed CT image synthesis method can not only output samples close to real images but also allow for stochastic variation in image diversity.


Asunto(s)
Diagnóstico por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Bases de Datos Factuales , Diagnóstico por Computador/métodos , Humanos , Nódulos Pulmonares Múltiples/patología
10.
Mater Sci Eng C Mater Biol Appl ; 80: 88-92, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866229

RESUMEN

Dual surfaced dumbbell-like gold magnetic nanoparticles (Au-Fe3O4) were synthesized for targeted aptamers delivery. Their unique biological properties were characterized as a smart photo-controlled drug carrier. DNA aptamers targeting vascular endothelial growth factor (VEGF) were assembled onto the surface of Au-Fe3O4 by electrostatic absorption. The binding capacity of the nanoparticles with VEGF aptamers was confirmed by gel electrophoresis. The targeted recognization of ovarian cancer cells by the aptamers-functionalized Au-Fe3O4 nanoparticles (Apt-Au-Fe3O4 NPs) was observed by confocal microscopy. Apt-Au-Fe3O4 was found to bind with SKOV-3 ovarian cancer cells specifically, leading to marked intracellular release of aptamers upon plasmon-resonant light (605nm) radiation, and to enhance the in vitro inhibition against tumor cell proliferation. The results show high potential of Apt-Au-Fe3O4as a targeted cancer hyperthermia carrier by remote control with high spatial/temporal resolution.


Asunto(s)
Nanopartículas de Magnetita , Aptámeros de Nucleótidos , Oro , Humanos , Magnetismo , Neoplasias , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...