Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
Inorg Chem ; 63(37): 17116-17126, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39231020

RESUMEN

Precisely tuning how and where a reaction occurs in a one-step selective system is important but challenging owing to the similar electronic environments in multiple active sites. In this work, highly selective and effective reaction sites were obtained by generating copper coordination polymers (Cu-CP) of a range of sizes and morphologies, from bulk solid crystals (1) to uniform nanosphere structures (1a), by controlling the amount of surfactant hexadecyl trimethylammonium bromide (CTAB). The results indicated that the morphology and size of the uniform nanosphere structures were affected by the proportion of CTAB; uniform distribution of nanosphere structures was achieved with a premade building carrier when the content of CTAB was 0.005 mmol, generating a well-established platform. Photocatalytic cadmium sulfide (CdS) was then immobilized on the surface of the premade platform unit 1a through an in situ process to generate CdS@1a composites with well-dispersed catalytic CdS active sites. Furthermore, the well-defined CdS@1a composite platform was utilized as photocatalysts to explore the selective one-step depolymerization reaction under blue-light irradiation. Notably, the CdS0.149@1a composite, which featured a unique structure with evenly dispersed, closely spaced catalytic sites, exhibiting remarkable photoelectrochemical behaviors for selective one-step depolymerization of lignin model substances to aromatic monomer phenol and acetophenone framework products. This work demonstrates the use of an inherently morphological process to construct outstanding photocatalysts that could enable a wide range of photocatalytic reactions.

2.
Chin Med ; 19(1): 122, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252102

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) has been hailed as a rich source of medicine, but many types of herbs and their functions still need to be rapidly discovered and elucidated. HerboChip, a target-based drug screening platform, is an array of different fractions deriving from herbal extracts. This study was designed to identify effective components from TCM that interact with vascular endothelial growth factor (VEGF) as a target using HerboChip. METHODS: Selected TCMs that are traditionally used as remedies for cancer prevention and wound healing were determined and extracted with 50% ethanol. Biotinylated-VEGF was hybridized with over 500 chips coated with different HPLC-separated fractions from TCM extracts and straptavidin-Cy5 was applied to identify plant extracts containing VEGF-binding fractions. Cytotoxicity of selected herbal extracts and their activities on VEGF-mediated angiogenic functions were evaluated. RESULTS: Over 500 chips were screened within a week, and ten positive hits were identified. The interaction of the identified herbal extracts with VEGF was confirmed in cultured endothelial cells. The identified herbs promoted or inhibited VEGF-mediated cell proliferation, migration and tube formation. Results from western blotting analysis demonstrated the identified herbal extracts significantly affected VEGF-triggered phosphorylations of eNOS, Akt and Erk. Five TCMs demonstrated potentiating activities on the VEGF response and five TCMs revealed suppressive activities. CONCLUSIONS: The current results demonstrated the applicability of the HerboChip platform and systematically elucidated the activity of selected TCMs on angiogenesis and its related signal transduction mechanisms.

3.
J Agric Food Chem ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292861

RESUMEN

Fucoxanthin, a dietary carotenoid, is predominantly found in edible brown algae and is commonly consumed worldwide. Fucoxanthin has been shown to possess beneficial health activities such as antidiabetic, anti-inflammatory, antimutagenic, and antiobesity; however, the effects of fucoxanthin on VEGF-mediated angiogenesis and its possible binding with VEGF are unknown. Here, different lines of evidence supported the suppressive roles of fucoxanthin in VEGF-mediated angiogenesis. In human umbilical vein endothelial cells, fucoxanthin remarkedly suppressed VEGF-mediated cell proliferative, migration, and invasive abilities, as well as tube formation, without cytotoxicity. In addition, fucoxanthin inhibited the subintestinal vessel formation of zebrafish in vivo. In signaling cascades, fucoxanthin was proposed to interact with VEGF, thus attenuating VEGF's functions in activating the VEGF receptor and its related downstream signaling, i.e., phosphorylations of MEK and Erk. Fucoxanthin also significantly blocked VEGF-triggered ROS formation. Furthermore, the outcomes of applying fucoxanthin in cancer cells were identified, which included (i) inhibiting VEGF-mediated cell proliferation and migration and (ii) inhibiting NF-κB translocation via limiting MMP2 expression. These lines of investigations supported the antiangiogenic roles of fucoxanthin, as well as reviewing its signaling mechanisms, in blocking the VEGF-triggered responses. The results would benefit the potential development of fucoxanthin for the prevention and treatment of angiogenesis-related diseases.

4.
Immun Inflamm Dis ; 12(8): e1367, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119967

RESUMEN

BACKGROUND: Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a rare autosomal dominant systemic microvascular disorder attributed to TREX1 (three-prime repair exonuclease-1) gene mutations, often proned to misdiagnosed. METHODS: We reported a case of RVCL-S coexisting with systemic lupus erythematosus due to a mutation in the TREX1 gene. This study provided a summary and discussion of previously documented cases related to TREX1 mutations or RVCL-S. RESULTS: A 39-year-old female patient visited the clinic due to progressive memory loss and speech difficulties. Magnetic resonance imaging results showed corpus callosum atrophy and multiple subcortical calcifications in both brain hemispheres. Genetic testing revealed a TREX1 gene mutation (c.294dupA). Treatment with immunosuppressive therapy for 2 months led to improvements in communication and mobility. We also summarized previously reported cases providing an overview of TREX1 gene mutation or RCVL-S. CONCLUSION: Our case establishes a compelling foundation for future RVCL-S diagnosis and treatment paradigms. Notably, conducting systemic immunity screening in patients with RVCL-S emerges as a strategic approach to prevent potential diagnostic oversights.


Asunto(s)
Exodesoxirribonucleasas , Leucoencefalopatías , Lupus Eritematoso Sistémico , Mutación , Humanos , Femenino , Adulto , Exodesoxirribonucleasas/genética , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/genética , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Leucoencefalopatías/etiología , Fosfoproteínas/genética , Errores Diagnósticos/prevención & control , Imagen por Resonancia Magnética , Vasculitis Retiniana/diagnóstico , Vasculitis Retiniana/etiología , Enfermedades de la Retina , Enfermedades Vasculares , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias
5.
Front Bioeng Biotechnol ; 12: 1418493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108594

RESUMEN

During invisalign treatment, as salivary proteins or glycoproteins fill the space between the teeth and the aligners, they can easily adhere to the teeth, forming an acquired cellular film on which bacteria are highly susceptible to colonizing, which in turn leads to the development of enamel white staining lesions (WSLs), one of the major complications of orthodontic treatment. Inhibiting the activity of cariogenic bacteria while promoting the remineralization of demineralized enamel is the key to preventing and treating WSLs. Currently, the drug commonly used in clinical practice for the treatment of WSLs is silver diamine fluoride, which, although it has both antimicrobial and remineralizing effects, suffers from problems such as pulpal irritation and tooth discoloration. In this study, based on the principle of coordination chemistry, copper ions and plant polyphenol tannins were assembled on invisible orthodontic aligners to form a metal-phenol network coating (TA-Cu MPNs), and zwitterionic sulfonamethyldopamine was introduced for bionic mineralization to obtain the multifunctional coating TA-Cu MPNs@ZDS@CaP (TZC). The coating exhibits acid-responsive release of Ca2+ and PO4 3-, and the decomposed CaP layer can be regenerated by a simple dipping method. The TZC coating strongly inhibits common cariogenic bacteria and their biofilms. In addition, the results of the in vitro mineralization experiment show that TZC-coated invisible orthodontic aligner treatment of demineralized enamel has significant remineralization effects. It is worth mentioning that the constructed coating has a durable antibacterial effect and can meet the service cycle of invisible orthodontic aligners. This study provides theoretical and experimental bases for the prevention or treatment of WSLs in invisible orthodontic treatment.

6.
Front Pharmacol ; 15: 1397761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104391

RESUMEN

Oral leukoplakia (OLK) is the most common oral precancerous lesion, and 3%-17% of OLK patients progress to oral squamous cell carcinoma. OLK is susceptible to recurrence and has no effective treatment. However, conventional drugs have significant side effects and limitations. Therefore, it is important to identify drugs that target OLK. In this study, scavenger receptor A (SR-A) was found to be abnormally highly expressed in the oral mucosal epithelial cells of OLK patients, whereas molecular biology studies revealed that low molecular weight fucoidan (LMWF) promoted apoptosis of dysplastic oral keratinocytes (DOK) and inhibited the growth and migration of DOK, and the inhibitory effect of LMWF on OLK was achieved by regulating the SR-A/Wnt signaling axis and related genes. Based on the above results and the special situation of the oral environment, we constructed LMWF/poly(caprolactone-co-lactide) nanofiber membranes with different structures for the in-situ treatment of OLK using electrospinning technology. The results showed that the nanofiber membranes with a shell-core structure had the best physicochemical properties, biocompatibility, and therapeutic effect, which optimized the LMWF drug delivery and ensured the effective concentration of the drug at the target point, thus achieving precise treatment of local lesions in the oral cavity. This has potential application value in inhibiting the development of OLK.

7.
J Tissue Viability ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39129112

RESUMEN

AIM: Senescent cells, inducing a senescence-associated secretory phenotype (SASP), lead to chronic inflammation in hard-to-heal wound tissue. However, eliminating senescent cells may impede normal wound healing due to their important role in the wound healing mechanism. Accordingly, we focused on wound exudates in hard-to-heal wounds, which contain many inflammation biomarkers consistent with SASP. Therefore, we hypothesized that senescent cells might be present in the exudates and induce chronic inflammation. This study investigated the relationship between gene expression associated with cellular senescence in exudates from pressure injuries and wound healing status. METHODS: This retrospective cohort study involved patients treated by a pressure injury team. We collected viable cells from wound dressings and analyzed gene expression. Pearson's correlation coefficient was calculated between cellular senescence and SASP expression. The relationship between the gene expression of cellular senescence and the wound area reduction rate by the following week was examined using a mixed-effects model. RESULTS: CDKN1A-related to cellular senescence-was expressed in 96.3 % of 54 samples, and CDKN1A expression and SASPs positively correlated (PLAU: r = 0.68 and TNF: r = 0.34). Low CDKN1A expression was statistically associated with a large wound area reduction rate (ß = 0.83, p < 0.01). CONCLUSIONS: Gene expression of both cellular senescence and SASP factor in wound dressings suggests the presence of cellular senescence. Senescent cells in wound dressings could be associated with delayed wound healing in the following week.

8.
J Colloid Interface Sci ; 678(Pt A): 520-531, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39214004

RESUMEN

As our previous works found, alkali metals have a common promotion effect on supported noble metals catalysts for formaldehyde (HCHO) oxidation. As second-group elements, alkaline earth metals (AEMs) are neighbors to the first-group elements and share some properties in common. However, detailed investigations into the specific mechanisms underlying AEMs' effects on HCHO oxidation remain limited. In this study, we found that Ba addition showed a similar promotion effect on HCHO oxidation for Pd/TiO2. Ba species stabilized Pd groups, improved the dispersion, and even caused a large number of monatomic-like Pd sites to appear, which may be attributed to the electronic interaction between promoter and metal (EIPM) between Ba and Pd. Besides, AEM loading had the important effect of increasing the electron density of metallic Pd nanoparticles, which further improved the ability for O2 activation and so enhanced the mobility of chemisorbed oxygen on the catalyst surface. For Pd/TiO2, the HCHO oxidation path is mainly HCHO→HCOOH→HCOO→H2O+CO2. By contrast, for Pd-Ba/TiO2, with more surface-active species, the formate intermediate was more likely to be directly oxidized into H2O and CO2, which is a more effective reaction pathway. The details of the EIPM between Pd and Ba were investigated by GPAW (DFT calculation module) in ASE (Atomic Simulation Environment). The AEM Ba acted as an electron donor and could interact with Pd d orbital electrons through BaO sp orbital electrons. Ba species were highly dispersed on the carrier due to the Ba-Ti interaction. Ba species dispersed over large areas stabilized the Pd particles and donated electrons to Pd. Therefore, adding an AEM is an efficacious strategy to improve the performance of the catalytic oxidation of HCHO.

9.
Nat Commun ; 15(1): 6601, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097570

RESUMEN

Understanding protein function is pivotal in comprehending the intricate mechanisms that underlie many crucial biological activities, with far-reaching implications in the fields of medicine, biotechnology, and drug development. However, more than 200 million proteins remain uncharacterized, and computational efforts heavily rely on protein structural information to predict annotations of varying quality. Here, we present a method that utilizes statistics-informed graph networks to predict protein functions solely from its sequence. Our method inherently characterizes evolutionary signatures, allowing for a quantitative assessment of the significance of residues that carry out specific functions. PhiGnet not only demonstrates superior performance compared to alternative approaches but also narrows the sequence-function gap, even in the absence of structural information. Our findings indicate that applying deep learning to evolutionary data can highlight functional sites at the residue level, providing valuable support for interpreting both existing properties and new functionalities of proteins in research and biomedicine.


Asunto(s)
Biología Computacional , Proteínas , Proteínas/metabolismo , Proteínas/química , Biología Computacional/métodos , Aprendizaje Profundo , Bases de Datos de Proteínas , Algoritmos , Humanos
11.
Curr Med Sci ; 44(4): 854-863, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112916

RESUMEN

OBJECTIVE: This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide (LPS) and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses. METHODS: PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25, 0.5, 0.75, 1, and 1.25 mg/mL for 24 h. Cell morphology was evaluated, and cell survival rates were calculated. A neurocyte inflammatory model was established with LPS treatment, which reached a 50% cell survival rate. PC12 cells were treated with 0.01, 0.1, 1, 10, or 100 µmol/L astragaloside IV for 24 h. The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments. NOS activity was detected by colorimetry; the expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting. The differentially expressed genes (DEGs) between the groups were screened using a second-generation sequence (fold change>2, P<0.05) with the following KEGG enrichment analysis, RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells. RESULTS: The viability of PC12 cells was not altered by treatment with 0.01, 0.1, or 1 µmol/L astragaloside IV for 24 h (P>0.05). However, after treatment with 0.5, 0.75, 1, or 1.25 mg/mL LPS for 24 h, the viability steadily decreased (P<0.01). The mRNA and protein expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS, and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h (P<0.01); however, these changes were reversed when PC12 cells were pretreated with 0.01, 0.1, or 1 µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h (P<0.05). Second-generation sequencing revealed that 1026 genes were upregulated, while 1287 genes were downregulated. The DEGs were associated with autophagy, TNF-α, interleukin-17, MAPK, P53, Toll-like receptor, and NOD-like receptor signaling pathways. Furthermore, PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2, CCL11, CCL7, MMP3, and MMP10, which are associated with the IL-17 pathway. RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results. CONCLUSION: LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage. astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro.


Asunto(s)
Antiinflamatorios , Supervivencia Celular , Reparación del ADN , Lipopolisacáridos , Saponinas , Triterpenos , Animales , Células PC12 , Ratas , Lipopolisacáridos/farmacología , Triterpenos/farmacología , Saponinas/farmacología , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos
12.
Cell Signal ; 121: 111301, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019338

RESUMEN

Ischemic stroke is one of the most disabling and fatal diseases around the world. The damaged brain tissues will undergo excessive autophagy, vascular endothelial cells injury, blood-brain barrier (BBB) impairment and neuroinflammation after ischemic stroke. However, there is no unified viewpoint on the underlying mechanism of brain damage. Transforming growth factor-ß1 (TGF-ß1), as a multi-functional cytokine, plays a crucial role in the intricate pathological processes and helps maintain the physiological homeostasis of brain tissues through various signaling pathways after ischemic stroke. In this review, we summarize the protective role of TGF-ß1 in autophagic flux, BBB, vascular remodeling, neuroinflammation and other aspects after ischemic stroke. Based on the review, we believe that TGF-ß1 could serve as a key target for treating ischemic stroke.


Asunto(s)
Autofagia , Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Barrera Hematoencefálica/metabolismo , Transducción de Señal , Células Endoteliales/metabolismo , Isquemia Encefálica/metabolismo
13.
J Hazard Mater ; 476: 135191, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013318

RESUMEN

Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.


Asunto(s)
Ácidos Ftálicos , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Ésteres/química , Hidrólisis , Cristalografía por Rayos X , Catálisis , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética
14.
J Hazard Mater ; 476: 135137, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39024770

RESUMEN

Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.


Asunto(s)
Arsénico , Bacterias , Sedimentos Geológicos , Agua de Mar , Contaminantes Químicos del Agua , Agua de Mar/microbiología , Agua de Mar/química , Arsénico/metabolismo , Arsénico/análisis , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Arseniatos/metabolismo , Microbiota
15.
Mar Genomics ; 76: 101126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009497

RESUMEN

Isolated from intertidal sediment of the Yellow Sea, China, Bremerella sp. P1 putatively represents a novel species within the genus Bremerella of the family Pirellulaceae in the phylum Planctomycetota. The complete genome of strain P1 comprises a single circular chromosome with a size of 6,955,728 bp and a GC content of 55.26%. The genome contains 5772 protein-coding genes, 80 tRNA and 6 rRNA genes. A total of 147 CAZymes and 128 sulfatases have been identified from the genome of strain P1, indicating that the strain has the capability to degrade a wide range of polysaccharides. Moreover, a gene cluster related to bacterial microcompartments (BMCs) formation containing genes encoding the shell proteins and related enzymes to metabolize fucose or rhamnose is also found in the genome of strain P1. The genome of strain P1 represents the second complete one in the genus Bremerella, expanding the understanding of the physiological and metabolic characteristics, interspecies diversity, and ecological functions of the genus.


Asunto(s)
Genoma Bacteriano , Polisacáridos , Polisacáridos/metabolismo , Secuenciación Completa del Genoma , China
16.
J Inorg Biochem ; 259: 112659, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38976937

RESUMEN

Ruthenium(II/III) coordination compounds have gained widespread attention as chemotherapy drugs, photosensitizers, and photodynamic therapy reagents. Herein, a family of 11 novel coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds, i.e., [RuII2(µ2-Cl)2(QL1a)2(DMSO)4] (YNU-4a = Yulin Normal University-4a), [RuII2(µ2-Cl)2(QL1b)2(DMSO)4] (YNU-4b), [RuII2(µ2-Cl)2(QL1c)2(DMSO)4] (YNU-4c), [RuII2(µ2-Cl)2(QL1d)2(DMSO)4]⋅2CH3OH (YNU-4d), [RuII(QL1e)2(DMSO)2] (YNU-4e), [RuIII(QL1e)2(QL3a)] (YNU-4f), [RuIII(QL1e)2(QL3b)] (YNU-4g), [RuIII(QL1e)2(QL3c)] (YNU-4h), [RuIICl2(H-QL3a)2(DMSO)2] (YNU-4i), [RuIICl2(H-QL3b)2(DMSO)2] (YNU-4j), and [RuIICl2(H-QL3c)2(DMSO)2] (YNU-4k), featuring the coligands 5,7-diiodo-8-hydroxyquinoline (H-QL1a), 5,7-dichloro-8-quinolinol (H-QL1b), 5-chloro-7-iodo-8-hydroxyquinolin (H-QL1c), 5,7-dibromo-8-hydroxyquinoline (H-QL1d), and 5,7-dichloro-8-hydroxy-2-methylquinoline (H-QL1e) and the main ligands 6,7-dichloro-3-pyridin-2-yl-chromen-2-one (H-QL3a), 6-bromo-3-pyridin-2-yl-chromen-2-one (H-QL3b), and 6-chloro-3-pyridin-2-yl-chromen-2-one (H-QL3c), respectively. The structure of compounds YNU-4a-YNU-4k was fully confirmed by conducting various spectroscopic analyses. The anticancer activity of YNU-4a-YNU-4k was evaluated in cisplatin-resistant A549/DDP lung cancer cells (LC549) versus normal embryonic kidney (HEK293) cells. Notably, compound YNU-4f bearing QL1e and QL3a ligands showed a more pronounced antiproliferative effect against LC549 cells (IC50 = 1.75 ± 0.09 µM) with high intrinsic selectivity toward LC549 cancer cells than YNU-4a-YNU-4e, H-QL1a-H-QL1e, cisplatin (PDD), YNU-4g-YNU-4k, and H-QL3a-H-QL3c. Additionally, a colocalization assay analysis of YNU-4e and YNU-4f showed that these two ruthenium(II/III) compounds were subcellularly accumulated in the mitochondria and other regions of the cytoplasm, where they induce mitophagy, adenosine triphosphate (ATP) reduction, mitochondrial respiratory chain complex I/IV(RC1/RC4) inhibition, and mitochondrial dysfunction. Accordingly, compounds YNU-4a-YNU-4k can be regarded as mitophagy inductors for the eradication of cisplatin-resistant LC549 cancer cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cumarinas , Oxiquinolina , Rutenio , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Rutenio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Cumarinas/química , Cumarinas/farmacología , Oxiquinolina/química , Oxiquinolina/farmacología , Línea Celular Tumoral , Animales , Apoptosis/efectos de los fármacos , Ratones
17.
Artículo en Inglés | MEDLINE | ID: mdl-39043879

RESUMEN

This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries. After conducting virtual screening to assess the affinity of 2621 acquired compounds, cluster analysis and bonding model analysis led to the discovery of five hit compounds. Additionally, antibacterial activity assays and time-killing kinetics revealed that T3995 could eliminate Staphylococcus aureus ATCC6538 and Bacillus subtilis ATCC9732, with MIC values of 32 and 2 µg/mL. Further morphology and FtsZ polymerization assays indicated that T3995 could be an antimicrobial inhibitor by targeting FtsZ protein. Moreover, hemolytic toxicity evaluation demonstrated that T3995 is safe at or below 16 ug/mL concentration. Additionally, bonding model analysis explained how the compound T3995 can display antimicrobial activity by targeting the FtsZ protein. In conclusion, this study presents a promising FtsZ inhibitor that was discovered through a fused computer method and bioactivity evaluation.

18.
Fish Shellfish Immunol ; 152: 109784, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067495

RESUMEN

Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Filogenia , Ranavirus , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Inmunidad Innata/genética , Lubina/inmunología , Ranavirus/fisiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Regulación de la Expresión Génica/inmunología , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/veterinaria
19.
Chin Med J (Engl) ; 137(14): 1684-1694, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38915213

RESUMEN

BACKGROUND: Given the established genetic linkage between triggering receptors expressed on myeloid cells 2 (TREM2) and Alzheimer's disease (AD), an expanding research body has delved into the intricate role of TREM2 within the AD context. However, a conflicting landscape of outcomes has emerged from both in vivo and in vitro investigations. This study aimed to elucidate the multifaceted nuances and gain a clearer comprehension of the role of TREM2. METHODS: PubMed database was searched spanning from its inception to January 2022. The search criteria took the form of ("Alzheimer's disease" OR "AD") AND ("transgenic mice model" OR "transgenic mouse model") AND ("Triggering receptor expressed on myeloid cells" OR "TREM2"). Inclusion criteria consisted of the following: (1) publication of original studies in English; (2) utilization of transgenic mouse models for AD research; and (3) reports addressing the subject of TREM2. RESULTS: A total of 43 eligible articles were identified. Our analysis addresses four pivotal queries concerning the interrelation of TREM2 with microglial function, Aß accumulation, tau pathology, and inflammatory processes. However, the diverse inquiries posed yielded inconsistent responses. Nevertheless, the inconsistent roles of TREM2 within these AD mouse models potentially hinge upon factors such as age, sex, brain region, model type, and detection methodologies. CONCLUSIONS: This review substantiates the evolving understanding of TREM2's disease progression-dependent impacts. Furthermore, it reviews the interplay between TREM2 and its effects across diverse tissues and temporal stages.


Asunto(s)
Enfermedad de Alzheimer , Glicoproteínas de Membrana , Ratones Transgénicos , Receptores Inmunológicos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Microglía/metabolismo
20.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832848

RESUMEN

Magnetic fields provide a valuable method to manipulate atomic energy levels and interactions in quantum precision measurements, but achieving precise measurements requires collaboration between the magnetic field system and the optical detection system. We propose a magnetic field system that incorporates a fast-switching magnetic field and an alternating magnetic field. Specifically, we enhance the switching speed by making structural improvements during the switching operation. An independent control approach is employed to reduce the switching time caused by electromagnetic induction across the coil using multilayer coils. The results demonstrate an inverse correlation between the rise and fall times of the magnetic field switch and the number of independently stacked coil layers, indicating the possibility of achieving further improvements in switching speed through structural enhancements. The system developed here has considerable potential for application to diverse quantum systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA