Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 2): 126752, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37678694

RESUMEN

Herein, a novel magnetic adsorbent (BC/AA/MN@Fe3O4) was successfully prepared from waste bamboo fiber tissue and montmorillonite, and subsequently applied for the highly selective removal of malachite green (MG, removal efficiency = 97.3 %) from the mixed dye solution of MG with methyl orange (MO, removal efficiency = 4.5 %). The magnetic adsorbent has a high porosity with abundant mesopores. In the single dye MG solution, the adsorbent could effectively remove MG over a wide pH range from 4 to 10, and the maximum adsorption capacity (qmax) was 2282.3 mg/g. Moreover, the magnetic adsorbent could remove MG from various solutions including mixed dye solution, high salinity solution, and real river water dye solution. The thermodynamic results proved that the adsorption process of MG was spontaneous and endothermic. The adsorption of MG was due to the comprehensive effects of electrostatic attraction, hydrogen bonding interactions and ions exchange, between the adsorbent and MG. Furthermore, the BC/AA/MN@Fe3O4 exhibited an excellent reusability with adsorption efficiency above 53.4 % after five consecutive cycles. Therefore, the prepared magnetic nanocellulose-based adsorbent was expected to be a promising material for highly selective adsorption and separation of MG from mixed dye solution.


Asunto(s)
Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Colorantes de Rosanilina , Termodinámica , Adsorción , Fenómenos Magnéticos , Concentración de Iones de Hidrógeno , Cinética
2.
Molecules ; 28(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37764274

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) can be used as an adsorbent to efficiently adsorb organic pollutants. However, ZIF nanoparticles are easy to form aggregates, hampering the effective and practical application in practical adsorption. In this study, the ZIF-8 was successfully loaded onto lignocellulose (LC) to further produce ZnO/LC by in situ growth method and hydrothermal treatment, and then Fe3O4 nanoparticles (Fe3O4 NPs) were loaded onto ZnO/LC to prepare magnetic Fe3O4/ZnO/LC adsorbent for removing tetracycline (TC) and congo red (CR) pollutants from aqueous solution. The adsorption properties of the adsorbent were systematically analyzed for different conditions, such as adsorbent dosage, solution pH, contact time, temperature and initial concentration. The experimental data were fitted using adsorption kinetic and isotherm models. The results showed that the pseudo-second-order model and Sips model were well fitted to the adsorption kinetic and adsorption isotherm, respectively. The adsorption capacities of TC and CR reached the maximum value of 383.4 mg/g and 409.1 mg/g in experimental conditions. The mechanism of the removal mainly includes electrostatic interaction, hydrogen bonding and π-π stacking. This novel adsorbent could be rapidly separated from the aqueous solution, suggesting its high potential to remove pollutants in wastewater.

3.
Int J Biol Macromol ; 249: 126118, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37541474

RESUMEN

Metal-organic frames (MOFs) have been recognized as one of the best candidates in the remediation of aqueous contaminants, while the fragile powder shape restricts the practical implementation. In this work, a shapeable, rebuildable, and multifunctional MOF composite (MIL-53@CF) was prepared from MIL-53 (Fe) and cellulose fiber (CF) using a simple ultrasonic method for adsorption and photocatalytic degradation of organic pollutants in wastewater. The results showed MIL-53(Fe) crystals were uniformly growth on CF surfaces and bonded with surface nanofibrils of CF through physical crosslinking and hydrogen bonding. Because of the high bonding strength, the MIL-53@CF composite exhibited an excellent compressive strength (3.53 MPa). More importantly, the MIL-53@CF composite was rebuildable through mechanical destruction followed by re-ultrasonication, suggesting the excellent reusability of MIL-53@CF for water remediation. The MIL-53@CF composite also had high adsorption capacities for methyl orange (884.6 mg·g-1), methylene blue (198.3 mg·g-1), and tetracycline (106.4 mg·g-1). MIL-53@CF composite could degrade TC through photocatalysis. The photocatalytic degradation mechanism was attributed to the Fe(II)/Fe(III) transform cycle reaction of MIL-53 crystal located on MIL-53@CF. Furthermore, the mechanical property and remoldability of MIL-53@CF composite increased its practicability. Comprehensively, MIL-53@CF composite provided a possible strategy to practically apply MOF in the remediation of aqueous contaminants.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Estructuras Metalorgánicas/química , Compuestos Férricos , Celulosa , Ultrasonido , Contaminantes Químicos del Agua/química , Agua
4.
Environ Sci Pollut Res Int ; 30(41): 93817-93829, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37523089

RESUMEN

Dye-contaminated water has caused a worldwide pollution, which is threatening aquatic organisms and human health. In this work, a pressure-driven foam adsorbent (PFA) was bioinspired from the tapestry turban for purifying the dye-contaminated water. The PFA was prepared using an one-step method from nanocellulose (NC), amino-functionalized ZIF-8 (ZIF-8-NH2), and high resilience polyurethane foam (PUF). It was applied to efficiently remove methyl orange (MO) and crystal violet (CV) dyes from dye-contaminated waste solutions. The maximum adsorption capacity of PFA for MO and CV was 225.9 mg/g (25 °C, pH = 2) and 41.6 mg/g (25 °C, pH = 10), respectively, which were acceptable as compared with the reported works. The dyes could be efficiently removed from various river water samples. After 5 cycles, the removal efficiencies of MO and CV decreased from 92.0% and 85.7% to 84.7% and 76.1%, respectively. Moreover, the PFA relied on pressure-driven force to release the purified water under a low pressure.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Colorantes/química , Agua/química , Contaminación del Agua , Purificación del Agua/métodos , Adsorción , Contaminantes Químicos del Agua/química , Cinética
5.
ACS Omega ; 6(36): 23447-23459, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34549143

RESUMEN

Human health is being threatened by cationic pollutants in wastewater, for example, methylene blue (MB) and Cu(II). Our research team successfully fabricated biofoam adsorbents from recycled bamboo waste that removed cationic pollutants via introducing bamboo fiber sources, i.e., bamboo fiber, bamboo α-cellulose fiber, and bamboo nanocellulose fiber, into a polyurethane (PU) foam matrix. The biofoam adsorbent with 1 g of nanocellulose (PUN1) presented high removal efficiencies for MB (95.52%) and Cu(II) (100%) in low cationic pollutant concentration aqueous solutions. The biofoam adsorbent with 1 g of bamboo fiber (PUB1) also displayed excellent removal efficiency for MB (98.61%) at pH 11. Meanwhile, 100% removal of Cu(II) was obtained by PUB1 at pH 7 (initial content = 15 mg/L). Furthermore, the PUN1 sample had excellent reusability, evidenced by 61.25% removal of MB after five adsorption-desorption cycles, suggesting that PUN1 is a promising renewable adsorbent for cationic pollutants. In addition, PUB1 is a low-cost adsorbent with good adsorption efficiencies for MB in weak alkaline solutions and Cu(II) in neutral aqueous solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...