Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 14(7): e3610, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38945806

RESUMEN

INTRODUCTION: Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS: Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS: The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION: Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.


Asunto(s)
Anestésicos por Inhalación , Disfunción Cognitiva , Hipocampo , Isoflurano , Enfermedades Neuroinflamatorias , Efectos Tardíos de la Exposición Prenatal , Privación de Sueño , Animales , Isoflurano/efectos adversos , Isoflurano/farmacología , Isoflurano/administración & dosificación , Femenino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/fisiopatología , Embarazo , Privación de Sueño/complicaciones , Privación de Sueño/fisiopatología , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/administración & dosificación , Sinapsis/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Privación Materna , Factor Neurotrófico Derivado del Encéfalo/metabolismo
2.
Zool Res ; 45(3): 679-690, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766749

RESUMEN

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.


Asunto(s)
Anestésicos por Inhalación , Ratones Endogámicos C57BL , Neurotransmisores , Propofol , Sevoflurano , Sevoflurano/farmacología , Animales , Propofol/farmacología , Neurotransmisores/metabolismo , Ratones , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo
3.
Neuron ; 111(10): 1626-1636.e6, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36917979

RESUMEN

Lasker's award-winning drug propofol is widely used in general anesthesia. The recreational use of propofol is reported to produce a well-rested feeling and euphoric state; yet, the neural mechanisms underlying such pleasant effects remain unelucidated. Here, we report that propofol actively and directly binds to the dopamine transporter (DAT), but not the serotonin transporter (SERT), which contributes to the rapid relief of anhedonia. Then, we predict the binding mode of propofol by molecular docking and mutation of critical binding residues on the DAT. Fiber photometry recording on awake freely moving mice and [18F] FP-CIT-PET scanning further establishes that propofol administration evokes rapid and lasting dopamine accumulation in nucleus accumbens (NAc). The enhanced dopaminergic tone drives biased activation of dopamine-receptor-1-expressing medium spiny neurons (D1-MSNs) in NAc and reverses anhedonia in chronically stressed animals. Collectively, these findings suggest the therapeutic potential of propofol against anhedonia, which warrants future clinical investigations.


Asunto(s)
Dopamina , Propofol , Ratones , Animales , Dopamina/metabolismo , Propofol/farmacología , Propofol/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Simulación del Acoplamiento Molecular , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/fisiología , Anhedonia , Ratones Endogámicos C57BL
4.
Int Immunopharmacol ; 82: 106374, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32163856

RESUMEN

Rheumatoid arthritis (RA) is a chronic, autoimmune disease characterized by inflammatory synovitis, but its pathogenesis remains unclear. NLRC5 is a newly discovered member of the NLR family that is effective in regulating autoimmunity, inflammatory responses, and cell death processes. Dexmedetomidine (DEX) has been reported to have a variety of pharmacological effects, including anti-inflammatory and analgesic effects. However, the role of DEX in RA has not been explored. In adjuvant-induced arthritis (AA) rat models, DEX (10 µg/kg and 20 µg/kg) reduced the pathological score, the arthritis score, paw swelling volume, and the serum levels of IL-1ß, IL-6, IL-17A, and TNF-α. Moreover, by using Western blot and real-time quantitative PCR (RT-qPCR), it was demonstrated that DEX can inhibit the expression of IL-1ß, IL-6, MMP-3, MMP-9 and P-P65 in the synovial tissue of AA rats. In human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), DEX (250 nM and 500 nM) was found to inhibit the expression of IL-1ß, IL-6, MMP-3, MMP-9, and P-P65 following stimulation with TNF-α. Moreover, DEX can inhibit the invasion and migration of RA-FLSs stimulated by TNF-α. Finally, the expression of NLRC5 in RA-FLSs and AA rat models was also reduced by DEX. After silencing NLRC5 in RA-FLSs, the expression of IL-1ß, IL-6, MMP-3, MMP-9, and P-P65, as well as the invasion and migration of cells, were significantly reduced. These results indicate that DEX inhibits the invasion, migration, and inflammation of RA-FLSs by reducing the expression of NLRC5 and inhibiting the NF-κB activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA