Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Sci Bull (Beijing) ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098564

RESUMEN

With the vigorous development and huge demand for portable wearable devices, wearable electronics based on functional fibers continue to emerge in a wide range of energy storage, motion monitoring, disease prevention, electromagnetic interference (EMI) shielding, etc. MXene, as an emerging two-dimensional inorganic compound, has shown great potential in functional fiber manufacturing and has attracted much research attention due to its own good mechanical properties, high electrical conductivity, excellent electrochemical properties and favorable processability. Herein, this paper reviews recent advances of MXene-based fibers. Speaking to MXene dispersions, the properties of MXene dispersions including dispersion stability, rheological properties and liquid crystalline properties are highlighted. The preparation techniques used to produce MXene-based fibers and application progress regarding MXene-based fibers into supercapacitors, sensors, EMI shielding and Joule heaters are summarized. Challenges and prospects surrounding the development of MXene-based fibers are proposed in future. This review aims to provide processing guidelines for MXene-based fiber manufacturing, thereby achieving more possibilities of MXene-based fibers in advanced applications with a view to injecting more vitality into the field of smart wearables.

2.
Int J Biol Macromol ; 278(Pt 1): 134383, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098695

RESUMEN

Based on the basic idea of expanding the interlayer spacing of MXene, utilizing the effect of gallic acid-modified cellulose nanofibers for rapid moisture separation, the flexible sensing and driving composite film with a perfect balance among humidity signal response and mechanical properties was prepared. Inspired by the stacking of autumn fallen leaves, the cellulose nanofibers-based composite films were formed by self-assembly under vacuum filtration of blending gallic acid-modified cellulose nanofibers with MXene. The enhanced mechanical properties (tensile strength 131.1 MPa, puncture load 0.88 N, tearing strength 165.55 N/mm, and elongation at break 16.14 %), humidity sensing (the stable induced voltage 63.7 mV and response/recovery time 3.2/5.1 s), and humidity driving (154.7° bending angle) properties were observed. The synergistic effect of hydrogen bonds, the "pinning effect" arising from the side chains, and the hierarchical layered microstructure contributed to the enhanced performance. This work exemplifies the application of green natural product for preparing intelligent sensing, wearable devices, and biomimetic robots.

3.
Nucleic Acids Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166497

RESUMEN

The African swine fever virus (ASFV) type II topoisomerase (Topo II), pP1192R, is the only known Topo II expressed by mammalian viruses and is essential for ASFV replication in the host cytoplasm. Herein, we report the structures of pP1192R in various enzymatic stages using both X-ray crystallography and single-particle cryo-electron microscopy. Our data structurally define the pP1192R-modulated DNA topology changes. By presenting the A2+-like metal ion at the pre-cleavage site, the pP1192R-DNA-m-AMSA complex structure provides support for the classical two-metal mechanism in Topo II-mediated DNA cleavage and a better explanation for nucleophile formation. The unique inhibitor selectivity of pP1192R and the difunctional mechanism of pP1192R inhibition by m-AMSA highlight the specificity of viral Topo II in the poison binding site. Altogether, this study provides the information applicable to the development of a pP1192R-targeting anti-ASFV strategy.

4.
Org Lett ; 26(33): 6939-6943, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39158203

RESUMEN

Herein, we introduce an electrochemical dehydrogenative [3 + 2]/[5 + 2] annulation of easily available N-arylacrylamides with γ,σ-unsaturated malonates through C(sp3)-H/C(sp2)-H functionalization. The employment of inexpensive ferrocene as the redox catalyst allows access to diverse benzo[b]azepin-2-ones in moderate to excellent yields without stoichiometric oxidants. This protocol features broad substrate scope and excellent selectivity, and mechanistic studies indicated that the reaction proceeded through the oxidation of a C(sp3)-H bond to generate an alkyl radical, radical addition across the C═C bond, [3 + 2]/[5 + 2] annulations, and C(sp2)-H functionalization cascades.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39185814

RESUMEN

BACKGROUND: Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems in regard to mental health care. It is now well established that N-methyl D-aspartate receptors (NMDARs) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS) and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated. METHODS: We reviewed several past studies in order to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression. RESULTS: These evidences suggest that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods. CONCLUSIONS: Specific inhibition of GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.

6.
Front Microbiol ; 15: 1450060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144209

RESUMEN

Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.

7.
Huan Jing Ke Xue ; 45(7): 3983-3994, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022946

RESUMEN

In order to understand the stability of the zooplankton and phytoplankton communities in the Guizhou plateau reservoir environment, the process of reservoir water quality change affecting the stability of plankton was studied. The changes in the plankton community and water quality in three different nutrient reservoirs (Huaxi Reservoir, Goupitan Reservoir, and Hailong Reservoir) were studied from October 2020 to August 2021. The stability of the zooplankton and phytoplankton communities was studied using time-lag analysis (TLA). Variance decomposition analysis (VPA) was used to explore the response of the two communities to environmental changes. The driving factors of plankton community changes in reservoirs were also revealed. The results showed that Huaxi Reservoir and Goupitan Reservoir were mesotrophic reservoirs, and Hailong Reservoir was a eutrophic reservoir. The average comprehensive nutrition indices of the three reservoirs were 44.07, 44.68, and 50.25. A total of 51 species of zooplankton rotifers, 39 species of rotifers, three species of copepods, and nine species of cladocera were identified. Among them, the abundance of rotifers was the highest, accounting for 85.96%. A total of seven phyla and 73 species of phytoplankton were identified, including 16 species in the phylum Cyanophyta, 32 species in the phylum Chlorophyta, 16 species in the phylum Diatoma, three species in the phylum Chlorophyta, four species in the phylum Euglenophyta, and one species each in the phyla Cryptophyta and Chrysophyta. Among them, the abundance of cyanobacteria and diatoms was the highest, accounting for 66.2% and 27.35%, respectively. The median absolute deviation (MAD) of the Bray-Curtis distance of zooplankton and phytoplankton community in the three reservoirs were 0.67 and 0.65 in Huaxi Reservoir, 0.80 and 0.69 in Goupitan Reservoir, and 0.85 and 0.47 in Hailong Reservoir, respectively. The larger the value, the greater the variation in the community. The absolute value of the slope of zooplankton was greater than that of phytoplankton in the TLA results, and the absolute values of the slopes were 0.018 and 0.004, respectively. The larger the absolute value of the slope, the faster the community variability. The zooplankton community in the three reservoirs was less stable than the phytoplankton community and more sensitive to environmental changes, and the degree of variation was greater. The higher the degree of eutrophication of the reservoir, the more obvious this phenomenon. VPA showed that the changes in plankton communities in Huaxi Reservoir and Hailong Reservoir were mainly influenced by water temperature and eutrophication factors. The changes in planktonic community in Goupitan Reservoir were mainly influenced by water temperature and chemical factors. The driving factors of Huaxi Reservoir were water temperature, TP, permanganate index, and SD. The driving factors of Goupitan Reservoir were water temperature, NO3-- N, and pH. The driving factors of Hailong Reservoir were water temperature and TP. Nutrients and water temperature were the main factors affecting the stability of plankton communities in reservoirs.


Asunto(s)
Monitoreo del Ambiente , Fitoplancton , Zooplancton , Fitoplancton/crecimiento & desarrollo , Fitoplancton/clasificación , Zooplancton/clasificación , China , Animales , Rotíferos/crecimiento & desarrollo , Calidad del Agua , Eutrofización , Copépodos/crecimiento & desarrollo , Cladóceros/crecimiento & desarrollo , Plancton/clasificación , Cianobacterias/crecimiento & desarrollo , Dinámica Poblacional
8.
World J Gastrointest Surg ; 16(6): 1691-1699, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983312

RESUMEN

BACKGROUND: Given the current organ shortage crisis, split liver transplantation (SLT) has emerged as a promising alternative for select end-stage liver disease patients. AIM: To introduce an ex-vivo liver graft splitting approach and evaluate its safety and feasibility in SLT. METHODS: A retrospective analysis was conducted on the liver transplantation data from cases performed at our center between April 1, 2022, and May 31, 2023. The study included 25 SLT cases and 81 whole liver transplantation (WLT) cases. Total ex-vivo liver splitting was employed for SLT graft procurement in three steps. Patient outcomes were determined, including liver function parameters, postoperative complications, and perioperative mortality. Group comparisons for categorical variables were performed using the χ²-test. RESULTS: In the study, postoperative complications in the 25 SLT cases included hepatic artery thrombosis (n = 1) and pulmonary infections (n = 3), with no perioperative mortality. In contrast, among the 81 patients who underwent WLT, complications included perioperative mortality (n = 1), postoperative pulmonary infections (n = 8), abdominal infection (n = 1), hepatic artery thromboses (n = 3), portal vein thrombosis (n = 1), and intra-abdominal bleeding (n = 5). Comparative analysis demonstrated significant differences in alanine aminotransferase (176.0 vs 73.5, P = 0.000) and aspartate aminotransferase (AST) (42.0 vs 29.0, P = 0.004) at 1 wk postoperatively, and in total bilirubin (11.8 vs 20.8, P = 0.003) and AST (41.5 vs 26.0, P = 0.014) at 2 wk postoperatively. However, the overall incidence of complications was comparable between the two groups (P > 0.05). CONCLUSION: Our findings suggest that the total ex-vivo liver graft splitting technique is a safe and feasible approach, especially under the expertise of an experienced transplant center. The approach developed by our center can serve as a valuable reference for other transplantation centers.

9.
Front Neurosci ; 18: 1423014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050665

RESUMEN

Background: Inferring directional connectivity of brain regions from functional magnetic resonance imaging (fMRI) data has been shown to provide additional insights into predicting mental disorders such as schizophrenia. However, existing research has focused on the magnitude data from complex-valued fMRI data without considering the informative phase data, thus ignoring potentially important information. Methods: We propose a new complex-valued transfer entropy (CTE) method to measure causal links among brain regions in complex-valued fMRI data. We use the transfer entropy to model a general non-linear magnitude-magnitude and phase-phase directed connectivity and utilize partial transfer entropy to measure the complementary phase and magnitude effects on magnitude-phase and phase-magnitude causality. We also define the significance of the causality based on a statistical test and the shuffling strategy of the two complex-valued signals. Results: Simulated results verified higher accuracy of CTE than four causal analysis methods, including a simplified complex-valued approach and three real-valued approaches. Using experimental fMRI data from schizophrenia and controls, CTE yields results consistent with previous findings but with more significant group differences. The proposed method detects new directed connectivity related to the right frontal parietal regions and achieves 10.2-20.9% higher SVM classification accuracy when inferring directed connectivity using anatomical automatic labeling (AAL) regions as features. Conclusion: The proposed CTE provides a new general method for fully detecting highly predictive directed connectivity from complex-valued fMRI data, with magnitude-only fMRI data as a specific case.

10.
Small ; : e2404019, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045905

RESUMEN

Developing electrocatalysts with excellent activity and stability for water splitting in acidic media remains a formidable challenge due to the sluggish kinetics and severe dissolution. As a solution, a multi-component doped RuO2 prepared through a process of dealloying-annealing is presented. The resulting multi-doped RuO2 possesses a nanoporous structure, ensuring a high utilization efficiency of Ru. Furthermore, the dopants can regulate the electronic structure, causing electron aggregation around unsaturated Ru sites, which mitigates Ru dissolution and significantly enhances the catalytic stability/activity. The representative catalyst (FeCoNiCrTi-RuO2) shows an overpotential of 167 mV at 10 mA cm-2 for oxygen evolution reaction (OER) in 0.5 m H2SO4 solution with a Tafel slope of 53.1 mV dec-1, which is among the highest performance reported. Moreover, it remains stable for over 200 h at a current density of 10 mA cm-2. This work presents a promising approach for improving RuO2-based electrocatalysts, offering a crucial advancement for electrochemical water splitting.

11.
iScience ; 27(7): 110233, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39021808

RESUMEN

The role of fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), and triglyceride-glucose index (TyG index) in predicting all-cause and cause-specific mortalities remains elusive. This study included 384,420 adults from the Shanghai cohort and the UK Biobank (UKB) cohort. After multivariable adjustment in the Cox models, FPG ≥7.0 mmol/L or HbA1c ≥ 6.5% increased the risk of all-cause mortality, FPG ≥5.6 mmol/L or HbA1c ≥ 6.5% increased CVD-related mortality, and higher or lower TyG index increased all-cause and CVD-related mortalities in the Shanghai cohort; FPG ≥5.6 mmol/L, HbA1c ≥ 5.7%, TyG index <8.31 or ≥9.08 increased the risks of all-cause, CVD-related, and cancer-related mortalities in the UKB cohort. FPG or HbA1c increased the discrimination of the conventional risk model in predicting all-cause and CVD-related mortalities in both cohorts. Thus, increased levels of FPG and HbA1c and U-shaped TyG index increase the risks of all-cause especially CVD-related mortalities.

12.
Int Urol Nephrol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39069601

RESUMEN

BACKGROUND: Dendritic cells (DCs) have been speculated to be involved in the pathogenesis of glomerular diseases. However, the numbers and distribution of DC subsets in the kidneys of patients with crescentic glomerulonephritis (CrGN) have not been clearly elucidated. METHODS: A total of 26 patients with biopsy-proven CrGN were enrolled. Indirect immunofluorescence staining was used to quantify DC subsets in renal specimens. Double staining of HLA with CD11C, BDCA2 and CD209 respectively was performed to detect DC subsets. The correlation between DC subsets infiltrated in the kidney and clinical and pathological parameters was investigated. RESULTS: DC subsets were predominantly present in the kidney interstitium, particularly in the peri-glomerular area. The numbers of CD11C+DCs, BDCA2+DCs and CD209+DCs increased in the patients with CrGN and varied among different types of CrGN. Though significant correlation between DC subsets and the percentage of crescents had not been identified, a notable increase in the number of CD11C+DCs were observed with the chronic development of crescents. Furthermore, patients with severe tubulointerstitial injury exhibited significantly more infiltrations of CD11C+DCs, BDCA2+DCs and CD209+DCs. Moreover, the numbers of CD11C+DCs and BDCA2+DCs were found to correlate with the level of serum C3. CONCLUSIONS: Patients with CrGN showed increased kidney infiltration of DC subsets, primarily localized in the renal interstitium and peri-glomerular region. The correlation between DC subsets and fibrosis of crescent and severe tubulointerstitial injury implied a potential involvement of DCs in the development of CrGN.

13.
Emerg Microbes Infect ; 13(1): 2377599, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38973388

RESUMEN

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious disease that can kill up to 100% of domestic pigs and wild boars. It has been shown that the pigs inoculated with some ASF vaccine candidates display more severe clinical signs and die earlier than do pigs not immunized. We hypothesize that antibody-dependent enhancement (ADE) of ASFV infection may be caused by the presence of some unidentified antibodies. In this study, we found that the ASFV-encoded structural protein A137R (pA137R) can be recognized by the anti-ASFV positive sera, indicating that the anti-pA137R antibodies are induced in the ASFV-infected pigs. Interestingly, our results demonstrated that the anti-pA137R antibodies produced in rabbits or pigs enhanced viral replication of different ASFV strains in primary porcine alveolar macrophages (PAMs), the target cells of ASFV. Mechanistic investigations revealed that anti-pA137R antibodies were able to promote the attachment of ASFV to PAMs and two types of Fc gamma receptors (FcγRs), FcγRII and FcγRIII, mediated the ADE of ASFV infection. Taken together, anti-pA137R antibodies are able to drive ASFV ADE in PAMs. These findings shed new light on the roles of anti-ASFV antibodies and have implications for the pathophysiology of the disease and the development of ASF vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Antivirales , Acrecentamiento Dependiente de Anticuerpo , Macrófagos Alveolares , Receptores de IgG , Animales , Virus de la Fiebre Porcina Africana/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología , Anticuerpos Antivirales/inmunología , Receptores de IgG/inmunología , Replicación Viral , Conejos
14.
Front Microbiol ; 15: 1392814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962133

RESUMEN

Alphaherpesviruses, categorized as viruses with linear DNA composed of two complementary strands, can potentially to induce diseases in both humans and animals as pathogens. Mature viral particles comprise of a core, capsid, tegument, and envelope. While herpesvirus infection can elicit robust immune and inflammatory reactions in the host, its persistence stems from its prolonged interaction with the host, fostering a diverse array of immunoescape mechanisms. In recent years, significant advancements have been achieved in comprehending the immunoescape tactics employed by alphaherpesviruses, including pseudorabies virus (PRV), herpes simplex virus (HSV), varicella-zoster virus (VZV), feline herpesvirus (FeHV), equine herpesvirus (EHV), and caprine herpesvirus type I (CpHV-1). Researchers have unveiled the intricate adaptive mechanisms existing between viruses and their natural hosts. This review endeavors to illuminate the research advancements concerning the immunoescape mechanisms of alphaherpesviruses by delineating the pertinent proteins and genes involved in virus immunity. It aims to furnish valuable insights for further research on related mechanisms and vaccine development, ultimately contributing to virus control and containment efforts.

15.
Adv Mater ; : e2404648, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970529

RESUMEN

Flexible and highly thermally conductive materials with consistent thermal conductivity (λ) during large deformation are urgently required to address the heat accumulation in flexible electronics. In this study, spring-like thermal conduction pathways of silver nanowire (S-AgNW) fabricated by 3D printing are compounded with polydimethylsiloxane (PDMS) to prepare S-AgNW/PDMS composites with excellent and consistent λ during deformation. The S-AgNW/PDMS composites exhibit a λ of 7.63 W m-1 K-1 at an AgNW amount of 20 vol%, which is ≈42 times that of PDMS (0.18 W m-1 K-1) and higher than that of AgNW/PDMS composites with the same amount and random dispersion of AgNW (R-AgNW/PDMS) (5.37 W m-1 K-1). Variations in the λ of 20 vol% S-AgNW/PDMS composites are less than 2% under a deformation of 200% elongation, 50% compression, or 180° bending, which benefits from the large deformation characteristics of S-AgNW. The heat-transfer coefficient (0.29 W cm-2 K-1) of 20 vol% S-AgNW/PDMS composites is ≈1.3 times that of the 20 vol% R-AgNW/PDMS composites, which reduces the temperature of a full-stressed central processing unit by 6.8 °C compared to that using the 20 vol% R-AgNW/PDMS composites as a thermally conductive material in the central processing unit.

16.
Int Immunopharmacol ; 139: 112701, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024747

RESUMEN

Current evidence suggests that porcine circovirus type 2 (PCV2) infection induces immunosuppression in piglets. Sophora subprostrate polysaccharide (SSP) exhibits various pharmacological activities, including immunoregulatory, anti-inflammatory, antiviral, and antioxidant properties. However, the acts of lncRNAs in regulating the therapeutic effects of SSP on PCV2-infected RAW264.7 cells remains poorly understood. This study aimed to investigate the molecular mechanisms by which lncRNAs regulate PCV2-induced immunosuppression during SSP treatment. Our findings revealed that 1699 mRNAs, 373 lncRNAs, and 129 miRNAs were differentially expressed in PCV2-infected RAW264.7 cells. Additionally, 359 mRNAs, 271 lncRNAs, and 79 miRNAs exhibited differential expression in SSP-treated PCV2-infected RAW264.7 cells. GO and KEGG analyses indicated that the candidate genes were enriched in the TNF/NF-κB signaling pathway. Furthermore, based on GO and KEGG pathway analysis, a ceRNA network involving chemokine (C-X-C motif) ligand 2 (CXCL2), miR-217-x, and MSTRG.5823.1 was constructed. We demonstrated that lncRNA MSTRG.5823.1 localized to the cytoplasm. Moreover, we found that silencing or overexpressing lncRNA MSTRG.5823.1 significantly modulated PCV2-induced immunosuppression by regulating the activation of the TNF/NF-κB signaling pathway. Specifically, lncRNA MSTRG.5823.1 overexpression increased the expression of TNF/NF-κB signaling pathway-related genes and proteins in PCV2-infected RAW264.7 cells. Conversely, silencing lncRNA MSTRG.5823.1 decreased their expression. Rescue assays further revealed that the suppressive effects of miR-217-x overexpression on TNF/NF-κB signaling pathway-related genes and proteins could be reversed by MSTRG.5823.1 overexpression. These findings highlight the critical role of lncRNA MSTRG.5823.1 in PCV2 infection progression and suggest a new strategy for the prevention and treatment of PCV2 infection.


Asunto(s)
Infecciones por Circoviridae , Circovirus , FN-kappa B , Polisacáridos , ARN Largo no Codificante , Transducción de Señal , Sophora , Animales , Ratones , Circovirus/inmunología , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Infecciones por Circoviridae/inmunología , Polisacáridos/farmacología , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , MicroARNs/genética , MicroARNs/metabolismo , Tolerancia Inmunológica/efectos de los fármacos
17.
Viruses ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932205

RESUMEN

African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Variación Genética , Genoma Viral , Virus de la Fiebre Porcina Africana/genética , Animales , Porcinos , Fiebre Porcina Africana/virología , Virulencia , Vacunas Virales/inmunología , Vacunas Virales/genética , Evolución Molecular , Evasión Inmune/genética , Mutación , Desarrollo de Vacunas
18.
J Neurosci Methods ; 409: 110207, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944128

RESUMEN

BACKGROUND: Real-valued mutual information (MI) has been used in spatial functional network connectivity (FNC) to measure high-order and nonlinear dependence between spatial maps extracted from magnitude-only functional magnetic resonance imaging (fMRI). However, real-valued MI cannot fully capture the group differences in spatial FNC from complex-valued fMRI data with magnitude and phase dependence. METHODS: We propose a complete complex-valued MI method according to the chain rule of MI. We fully exploit the dependence among magnitudes and phases of two complex-valued signals using second and fourth-order joint entropies, and propose to use a Gaussian copula transformation with a lower bound property to avoid inaccurate estimation of joint probability density function when computing the joint entropies. RESULTS: The proposed method achieves more accurate MI estimates than the two histogram-based (normal and symbolic approaches) and kernel density estimation methods for simulated signals, and enhances group differences in spatial functional network connectivity for experimental complex-valued fMRI data. COMPARISON WITH EXISTING METHODS: Compared with the simplified complex-valued MI and real-valued MI, the proposed method yields higher MI estimation accuracy, leading to 17.4 % and 145.5 % wider MI ranges, and more significant connectivity differences between healthy controls and schizophrenia patients. A unique connection between executive control network (EC) and right frontal parietal areas, and three additional connections mainly related to EC are detected than the simplified complex-valued MI. CONCLUSIONS: With capability in quantifying MI fully and accurately, the proposed complex-valued MI is promising in providing qualified FNC biomarkers for identifying mental disorders such as schizophrenia.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Masculino , Adulto , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Dinámicas no Lineales , Adulto Joven , Simulación por Computador , Algoritmos
19.
Viruses ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932241

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Quinasa I-kappa B , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Virales , Animales , Virus de la Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Porcinos , Quinasa I-kappa B/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Humanos , Células HEK293 , Interacciones Huésped-Patógeno , Factores de Virulencia/metabolismo , Autofagia , Unión Proteica
20.
Vaccines (Basel) ; 12(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38932358

RESUMEN

Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), results in significant economic losses to the swine industry in many countries. Vaccination represents the primary strategy to control CSF and the CSFV E2 protein is known as the major protective antigen. However, the E2 protein expressed or presented by different systems elicits distinct immune responses. In this study, we established a stable CHO cell line to express the E2 protein and delivered it using self-assembled ferritin nanoparticles (NPs). Subsequently, we compared the adaptive immune responses induced by the E2-ferritin NPs and the monomeric E2 protein produced by the CHO cells or a baculovirus expression system. The results revealed that the NP-delivered E2 protein elicited higher titers of neutralizing antibodies than did the monomeric E2 protein in pigs. Importantly, only the NP-delivered E2 protein significantly induced CSFV-specific IFN-γ-secreting cells. Furthermore, all the pigs inoculated with the E2-ferritin NPs were completely protected from a lethal CSFV challenge infection. These findings demonstrate the ability of the E2-ferritin NPs to protect pigs against the lethal CSFV challenge by eliciting robust humoral and cellular immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA