Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38238896

RESUMEN

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinación , Calcineurina/genética , Calcineurina/metabolismo , Saccharomyces cerevisiae/metabolismo , Semillas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas de Unión al Calcio/metabolismo
2.
J Plant Physiol ; 287: 154043, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37392527

RESUMEN

Lamiophlomis rotata is a medicinal plant in Qinghai-Tibet Plateau, in which flavonoid compounds are the major medicinal components. However, it remains unclear how flavonoid metabolism of L. rotata is influenced by soil properties and microbial community. In this study, we collected L. rotata seedlings and rhizosphere soils from five habitats ranging from 3750 to 4270 m of altitude and analyzed the effects of habitat conditions on flavonoid metabolism. The activities of peroxidase, cellulase, and urease were increased with altitude, while those of alkaline phosphatase, alkaline protease, and sucrase were decreased with altitude. Analysis of OTUs showed that the total number of bacterial genera was higher than that of fungal genera. The highest number of fungal genera was 132, and that of bacterial genera was 33 in Batang (BT) town in Yushu County at an altitude of 3880 m, suggesting that the fungal communities may play a critical role in L. rotata rhizosphere soils. Flavonoids in leaves and roots of L. rotata shared a similar pattern, with a trend of increasing levels with altitude. The highest flavonoid content measured, 12.94 mg/g in leaves and 11.43 mg/g in roots, was from Zaduo (ZD) County at an altitude of 4208 m. Soil peroxidases affected quercetin content in leaves of L. rotata, while the fungus Sebacina affected flavonoid content in leaves and roots of L. rotata. The expression of PAL, F3'H, FLS, and FNS genes showed a declining trend in leaves with altitude, while F3H showed an increasing trend in both leaves and roots. Overall, soil physicochemical properties and microbial community affect flavonoid metabolism in L. rotata in Qinghai-Tibet Plateau. The variations in flavonoid content and gene expression as well as their associations with soil factors revealed the complexity of the growth conditions and genetic makeup in L. rotata habitats of Qinghai-Tibet Plateau.


Asunto(s)
Microbiota , Suelo , Tibet , Flavonoides , Expresión Génica , Microbiología del Suelo
3.
J Integr Plant Biol ; 65(9): 2157-2174, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37252889

RESUMEN

Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR-cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vacuolas/metabolismo , Plastidios/metabolismo , Cationes/metabolismo , Transporte de Proteínas
4.
PLoS One ; 18(3): e0279192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930609

RESUMEN

Salt stress, as a principal abiotic stress, harms the growth and metabolism of rice, thus affecting its yield and quality. The tillering stage is the key growth period that controls rice yield. Prohexadione-calcium (Pro-Ca) can increase the lodging resistance of plants by reducing plant height, but its effects on rice leaves and roots at the tillering stage under salt stress are still unclear. This study aimed to evaluate the ability of foliar spraying of Pro-Ca to regulate growth quality at the rice tillering stage under salt stress. The results showed that salt stress reduced the tillering ability of the rice and the antioxidant enzyme activity in the roots. Salt stress also reduced the net photosynthetic rate (Pn), stomatal conductance (Gs) and intercellular CO2 concentration (Ci) of the rice leaves and increased the contents of osmotic regulatory substances in the leaves and roots. The application of exogenous Pro-Ca onto the leaves increased the tiller number of the rice under salt stress and significantly increased the photosynthetic capacity of the leaves. Additionally, it increased the activities of antioxidant enzymes and the AsA content. The contents of an osmotic regulation substance, malondialdehyde (MDA), and H2O2 in the leaves and roots also decreased. These results suggested that Pro-Ca can increase the tillering ability, photosynthetic capacity, osmotic adjustment substance content levels and antioxidant enzyme activity levels in rice and reduce membrane lipid peroxidation, thus improving the salt tolerance of rice at the tillering stage.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/metabolismo , Calcio/metabolismo , Peróxido de Hidrógeno/metabolismo , Hojas de la Planta/metabolismo , Estrés Salino , Calcio de la Dieta/metabolismo , Plantones
5.
PeerJ ; 11: e14804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778152

RESUMEN

Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/farmacología , Cloruro de Sodio/farmacología , Fotosíntesis , Peroxidasas/metabolismo , Calcio de la Dieta/farmacología
6.
J Plant Physiol ; 279: 153860, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371870

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta/genética
7.
J Plant Physiol ; 279: 153856, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375401

RESUMEN

Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.


Asunto(s)
Lycium , Lycium/genética , Frutas/genética , Antocianinas , Reproducción , Flavonoides , Regulación de la Expresión Génica de las Plantas
9.
J Plant Physiol ; 277: 153792, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35973258

RESUMEN

Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Tubo Polínico , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Iones/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Bombas de Protones/metabolismo
11.
J Plant Physiol ; 274: 153716, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35597106

RESUMEN

In living organisms, nutrient, energy, and environmental stimuli sensing and signaling are considered as the most primordial regulatory networks governing growth and development. Target of Rapamycin (TOR) is a diversified Serine/Threonine protein kinase existing in all eukaryotes that regulates distinct salient growth and developmental signaling pathways. TOR signaling acts as a central hub in plants that allows a variety of nutrients, energy, hormones, and environmental stimuli to be integrated. TOR is activated by several nutrients and promotes energy-consuming processes such as cell division, protein translation, mRNA translation and ribosome biogenesis. We summarized the recent findings on the TOR function in regulating the dynamic networks of nutrients, including sugar, sulfur, nitrogen, carbon, phosphorus, potassium, and amino acids. TOR's role in abiotic stress was discussed, in which TOR orchestrating stress signaling, including heat, cold, salt, and osmotic stress, to regulate transcriptional and metabolic reprogramming, as well as growth and development. The interconnections between TOR and SnRK1 kinase were discussed in controlling nutrient deprivation and abiotic stress.


Asunto(s)
Desarrollo de la Planta , Serina-Treonina Quinasas TOR , Nutrientes , Desarrollo de la Planta/genética , Sirolimus , Estrés Fisiológico/fisiología , Serina-Treonina Quinasas TOR/metabolismo
12.
J Plant Physiol ; 271: 153661, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240511

RESUMEN

Preprint servers allow rapid publication of research findings by eliminating the time gap between submission and publication associated with editorial and peer review of scientific works. Consequently, non-peer-reviewed articles are essentially accessible immediately to researchers and the public. There are many valid justifications for sharing work on preprint servers, such as the ability to collect feedback from the research community and improve work prior to journal submission and a reduced risk of work being "scooped" by competitors. Rapid access to the latest scientific developments can furthermore expedite progress in important research areas. Significant downsides of preprint servers, however, are that the public, including members of the media and policy makers, cannot judge the quality of such non-reviewed publications and that misinformation may be spread. Balancing the good and the bad of preprint servers as opposed to classic peer review, we provide guidance for authors of the Journal of Plant Physiology.


Asunto(s)
Fenómenos Fisiológicos de las Plantas
13.
J Plant Physiol ; 266: 153534, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34601338

RESUMEN

Cold stress is one of the harsh environmental stresses that adversely affect plant growth and crop yields in the Qinghai-Tibet Plateau. However, plants have evolved mechanisms to overcome the impact of cold stress. Progress has been made in understanding how plants perceive and transduce low-temperature signals to tolerate cold stress. Small signaling molecules are crucial for cellular signal transduction by initiating the downstream signaling cascade that helps plants to respond to cold stress. These small signaling molecules include calcium, reactive oxygen species, nitric oxide, hydrogen sulfide, cyclic guanosine monophosphate, phosphatidic acid, and sphingolipids. The small signaling molecules are involved in many aspects of cellular and physiological functions, such as inducing gene expression and activating hormone signaling, resulting in upregulation of the antioxidant enzyme activities, osmoprotectant accumulation, malondialdehyde reduction, and photosynthesis improvement. We summarize our current understanding of the roles of the small signaling molecules in cold stress in plants, and highlight their crosstalk in cold signaling transduction. These discoveries help us understand how the plateau plants adapt to the severe alpine environment as well as to develop new crops tolerating cold stress in the Qinghai-Tibet Plateau.


Asunto(s)
Respuesta al Choque por Frío , Plantas , Transducción de Señal , Adaptación Fisiológica , Antioxidantes , Calcio , Frío , Productos Agrícolas , GMP Cíclico , Sulfuro de Hidrógeno , Óxido Nítrico , Ácidos Fosfatidicos , Fenómenos Fisiológicos de las Plantas , Especies Reactivas de Oxígeno , Esfingolípidos , Estrés Fisiológico
14.
J Plant Physiol ; 266: 153539, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34628190

RESUMEN

Both the antiporter CHX23 (Cation/Proton Exchangers 23) and auxin transporter PIN8 (PIN-FORMED 8) are localized in the ER and regulate pollen growth in Arabidopsis. But how these two proteins regulate pollen growth remains to be studied. Here, we report that CHX23 and PIN8 act coordinately in regulating pollen growth. The chx23 mutant was reduced in pollen growth and normally shaped pollen grains, and complementation with CHX23 restored both pollen growth and normal pollen morphology. NAA treatments showed that CHX23 was crucial for pollen auxin homeostasis. The pin8 chx23 double mutant was decreased in pollen growth and normal pollen grains, indicating the joint effort of CHX23 and PIN8 in pollen growth. In vivo germination assay showed that CHX23 and PIN8 were involved in the early stage of pollen growth. CHX23 and PIN8 also function collaboratively in maintaining pollen auxin homeostasis. PIN8 depends on CHX23 in regulating pollen morphology and response to NAA treatments. CHX23 co-localized with PIN8, but there was no physical interaction. KCl and NaCl treatments showed that pollen growth of chx23 was reduced less than Col-0; pin8 chx23 was reduced less than chx23 and pin8. Together, CHX23 may regulate PIN8 function and hence pollen growth through controlling K+ and Na+ homeostasis mediated by its transport activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Polen , Antiportadores , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos , Proteínas de Transporte de Membrana , Polen/crecimiento & desarrollo
16.
J Plant Physiol ; 255: 153305, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33129075

RESUMEN

NHX5 and NHX6, endosomal Na+,K+/H+ antiporters in Arabidopsis thaliana, play a vital role in growth and development. Our previous study has shown that NHX5 and NHX6 function as H+ leak to regulate auxin-mediated growth in Arabidopsis. In this report, we investigated the function of NHX5 and NHX6 in controlling PIN6-mediated auxin homeostasis and growth in Arabidopsis. Phenotypic analyses found that NHX5 and NHX6 were critical for the function of PIN6, an auxin transporter. We further showed that PIN6 depended on NHX5 and NHX6 in regulating auxin homeostasis. NHX5 and NHX6 were colocalized with PIN6, but they did not interact physically. The conserved acidic residues that are vital for the activity of NHX5 and NHX6 were critical for PIN6 function. Together, NHX5 and NHX6 may regulate PIN6 function by their transport activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostasis/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Iones/metabolismo , Fenotipo , Plantas Modificadas Genéticamente/metabolismo , Potasio/metabolismo , Cloruro de Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
17.
J Plant Physiol ; 255: 153295, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33129077

RESUMEN

Arabidopsis NHX5 and NHX6 are endosomal Na+,K+/H+ antiporters that function in mediating Na+, K+ and pH homeostasis. Here, we report that NHX5 and NHX6 mediate Li+ homeostasis in Arabidopsis. We found that the nhx5 nhx6 double mutant was defective in growth and had a high pale rate under Li+ stress; complementation with either NHX5 or NHX6 restored the growth of the double mutant under LiCl treatments. We further found that CBL3 and CIPK18 collaborate with NHX5 and NHX6 in controlling seedling growth. CBL3 and CIPK18 are involved in the NHX5- and NHX6-mediated response to Li+ stress but not to salt or low K+ stress. In addition, NHX5 and NHX6 coordinate NHX8, a plasma membrane antiporter, in mediating Li+ homeostasis. NHX8 may function differently from NHX5 and NHX6 in mediating Li+ homeostasis. NHX8 was not controlled by CBL3 and CIPK18. Overall, CBL3 and CIPK18 are required for the function of NHX5 and NHX6 in mediating Li+ homeostasis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Homeostasis/fisiología , Iones/metabolismo , Potasio/metabolismo , Cloruro de Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/fisiología
18.
Plant Physiol Biochem ; 132: 475-489, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30292980

RESUMEN

Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.


Asunto(s)
Chenopodiaceae/crecimiento & desarrollo , Chenopodiaceae/genética , Extremófilos/crecimiento & desarrollo , Extremófilos/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Transcriptoma/genética , Amaranthaceae/genética , Regulación hacia Abajo/genética , Sequías , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Metaboloma , Anotación de Secuencia Molecular , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Transcripción Genética
19.
Plant Physiol ; 178(4): 1657-1678, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30309966

RESUMEN

KEA4, KEA5, and KEA6 are members of the Arabidopsis (Arabidopsis thaliana) K+ efflux antiporter (KEA) family that share high sequence similarity but whose function remains unknown. Here, we show their gene expression pattern, subcellular localization, and physiological function in Arabidopsis. KEA4, KEA5, and KEA6 had similar tissue expression patterns, and the three KEA proteins localized to the Golgi, the trans-Golgi network, and the prevacuolar compartment/multivesicular bodies, suggesting overlapping roles of these proteins in the endomembrane system. Phenotypic analyses of single, double, and triple mutants confirmed functional redundancy. The triple mutant kea4 kea5 kea6 had small rosettes, short seedlings, and was sensitive to low K+ availability and to the sodicity imposed by high salinity. Also, the kea4 kea5 kea6 mutant plants had a reduced luminal pH in the Golgi, trans-Golgi network, prevacuolar compartment, and vacuole, in accordance with the K/H exchange activity of KEA proteins. Genetic analysis indicated that KEA4, KEA5, and KEA6 as well as endosomal Na+/H+exchanger5 (NHX5) and NHX6 acted coordinately to facilitate endosomal pH homeostasis and salt tolerance. Neither cancelling nor overexpressing the vacuolar antiporters NHX1 and NHX2 in the kea4 kea5 kea6 mutant background altered the salt-sensitive phenotype. The NHX1 and NHX2 proteins in the kea4 kea5 kea6 mutant background could not suppress the acidity of the endomembrane system but brought the vacuolar pH close to wild-type values. Together, these data signify that KEA4, KEA5, and KEA6 are endosomal K+ transporters functioning in maintaining pH and ion homeostasis in the endomembrane network.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Potasio/metabolismo , Antiportadores/genética , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Compartimento Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Aparato de Golgi/metabolismo , Homeostasis/fisiología , Concentración de Iones de Hidrógeno , Litio/farmacología , Plantas Modificadas Genéticamente , Potasio/farmacología , Estrés Salino/genética , Vacuolas/genética , Vacuolas/metabolismo , Red trans-Golgi/metabolismo
20.
Plant Cell Environ ; 41(4): 850-864, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29360148

RESUMEN

AtNHX5 and AtNHX6 are endosomal Na+ ,K+ /H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin-mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin-related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the endoplasmic reticulum (ER)-localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were colocalized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+ -leak pathway provides a fine-tuning mechanism that controls cellular auxin fluxes.


Asunto(s)
Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Indolacéticos/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Homeostasis , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Proteínas de Transporte de Membrana/metabolismo , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...