Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(6): 14902-14915, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36161587

RESUMEN

In order to explore the adsorption characteristics of phosphorus from molecules with different molecular structures and varying number of phosphate groups on metal-modified biochar, walnut shell biochar was modified with LaCl3 to prepare lanthanum-loaded biochar (BC-La). Adsorption of four polar components, namely phytic acid (IHP), adenosine-5'-disodium triphosphate (5-ATP), hydroxyethylidene diphosphonic acid (HEDP), and sodium pyrophosphate (PP), was studied. The adsorption properties and mechanism of phosphorus sorption by BC-La were analyzed by SEM-EDS and FTIR for the different structures. The results showed that the maximum adsorption capacity of BC-La for IHP, 5-ATP, HEDP, and PP was 85.85, 9.04, 15.80, and 14.45 mg/g, respectively. The adsorption capacity was positively correlated with the polarity of organic phosphorus. The adsorption behavior conformed to the quasi second-order kinetic fitting equation, and the increase of temperature was conducive to the removal of all four phosphorus pollutants. BC-La adsorbs IHP and HEDP mainly through electrostatic attraction. The adsorption of 5-ATP and PP is dominated by complexation. The La-modified biochar has broad prospects in water remediation, which can provide a theoretical basis for removal of different forms of phosphorus pollutants and prevention and control of water eutrophication.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/química , Adsorción , Estructura Molecular , Ácido Etidrónico , Agua , Carbón Orgánico/química , Cinética , Adenosina Trifosfato
2.
Environ Res ; 205: 112455, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863688

RESUMEN

The loss of soil organic phosphorus can easily cause water eutrophication. In order to effectively reduce the loss of soil organic phosphorus, this manuscript investigated the adsorption of soil organic phosphorus by lanthanum modified biochar (BC), traditional adsorbent gypsum (GY) and zeolite (ZE) by taking phytic acid as the representative. The adsorption isotherm model and kinetic models were used to fit the phosphorus absorption characteristics of the adsorbents. The effects of initial pH and temperature on the adsorption capacity were discussed, and the adsorption mechanism of each adsorbent was explained by means of FTIR and XRD. The results showed that the adsorption capacity of phytate phosphorus followed the trend of BCTS > GYTS > ZETS > TS (soil), and the maximum phosphorus adsorption capacity obtained from Langmuir isotherm for treatment with BCTS was 2.836 mg g-1, and the treatment had the strongest affinity for phytate phosphorus and also the ability to store phosphorus. The adsorption process fits well with Langmuir isotherm equation and pseudo-second-order kinetic equation, and the adsorption behavior of phytate phosphorus was mainly controlled by the chemisorption of monolayer. When the concentration of phytate phosphorus was 100 mg L-1, percentage of modified biochar added to the soil was 3% and the pH was 6, the adsorption capacity reached the maximum, and the maximum adsorption capacity was 2.000 mg g-1. The results of FTIR and XRD characterization showed that complexation was the main adsorption mechanism. In this study, the combination of modified biochar and soil phytate phosphorus can provide a good theoretical basis for reducing the loss of soil organic phosphorus.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fósforo/química , Suelo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...