Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 776-788, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38495003

RESUMEN

Intervertebral disc degeneration (IDD) is the cause of low back pain (LBP), and recent research has suggested that inflammatory cytokines play a significant role in this process. Maslinic acid (MA), a natural compound found in olive plants ( Olea europaea), has anti-inflammatory properties, but its potential for treating IDD is unclear. The current study aims to investigate the effects of MA on TNFα-induced IDD in vitro and in other in vivo models. Our findings suggest that MA ameliorates the imbalance of the extracellular matrix (ECM) and mitigates senescence by upregulating aggrecan and collagen II levels as well as downregulating MMP and ADAMTS levels in nucleus pulposus cells (NPCs). It can also impede the progression of IDD in rats. We further find that MA significantly affects the PI3K/AKT and NF-κB pathways in TNFα-induced NPCs determined by RNA-seq and experimental verification, while the AKT agonist Sc-79 eliminates these signaling cascades. Furthermore, molecular docking simulation shows that MA directly binds to PI3K. Dysfunction of the PI3K/AKT pathway and ECM metabolism has also been confirmed in clinical specimens of degenerated nucleus pulposus. This study demonstrates that MA may hold promise as a therapeutic agent for alleviating ECM metabolism disorders and senescence to treat IDD.


Asunto(s)
Degeneración del Disco Intervertebral , FN-kappa B , Núcleo Pulposo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Triterpenos , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/patología , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología , Masculino , Triterpenos/farmacología , Ratas , Humanos , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Femenino , Células Cultivadas , Ácido Oleanólico/análogos & derivados
2.
BMC Musculoskelet Disord ; 23(1): 985, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380336

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) possess the potential to differentiate into chondrocytes, which makes them an ideal source for healing cartilage defects. Here, we seek to identify the essential genes participating in MSCs chondrogenesis. METHODS: Human MSCs were induced for chondrogenesis for 7, 14, and 21 days using a high-density micromass culture system, and RNA was extracted for RNA-seq. RESULTS: A total of 6247 differentially expressed genes (DEGs) were identified on day 7, and 85 DEGs were identified on day 14. However, no significant DEGs was identified on day 21. The top 30 DEGs at day 7, including COL9A3, COL10A1, and CILP2, are closely related to extracellular matrix organization. While the top 30 DEGs at day 14 revealed that inflammation-related genes were enriched, including CXCL8, TLR2, and CCL20. We also conducted protein-protein interaction (PPI) networks analysis using the search tool for the retrieval of interacting genes (STRING) database and identified key hub genes, including CXCL8, TLR2, CCL20, and MMP3. The transcriptional factors were also analyzed, identifying the top 5 TFs: LEF1, FOXO1, RORA, BHLHE41, and SOX5. We demonstrated one particular TF, RORA, in promoting early MSCs chondrogenesis. CONCLUSIONS: Taken together, our results suggested that these DEGs may have a complex effect on MSCs chondrogenesis both synergistically and solitarily.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Humanos , Condrogénesis/genética , Receptor Toll-Like 2 , Diferenciación Celular/genética , Condrocitos , Células Cultivadas
3.
Front Surg ; 9: 1028873, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386502

RESUMEN

Study Design: Retrospective analysis. Objective: To evaluate bone quality and investigate asymmetrical development of the thoracic vertebral body in adolescent idiopathic scoliosis (AIS) based on Hounsfield unit (HU) measurements obtained from computed-tomography (CT) scans. Summary of Background Data: HU value demonstrated higher reliability and accuracy than the traditional method, indicating that they could be used to individually evaluate and effectively assess the bone quality of every vertebra in the CT films. Methods: Total 30 AIS patients classified as Lenke Type 1A and 30 paired controls were included in this study. Regions of interest for HU value were measured on three horizontal images of the thoracic vertebrae. HU measurements of the whole vertebral body in each vertebra were obtained. Using HU value, we separately measured the concave and convex sides of each vertebral body in patients' group, as well as within the left and right sides in controls. Results: In controls, the mean HU value of T1-T12 thoracic vertebral bodies was 240.03 ± 39.77, with no statistical differences among different levels. As for AIS patients, in the structural curve, the apical region had a significantly lower HU compared with the other regions, and asymmetrical change was found between the concave and convex sides, most significantly in the apical region. In the non-structural curve, the average HU value was 254.99 ± 44.48, and no significant difference was found either among the different levels of vertebrae or between the concave and convex sides. Conclusions: Abnormal and asymmetrical changes in bone quality of the thoracic vertebral body in patients with Lenke 1A AIS were indicated. Low bone quality in the convex side of the structural curve indicated stronger internal fixation in surgery to correct the deformity.

4.
Stem Cell Res Ther ; 13(1): 392, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922833

RESUMEN

BACKGROUND: Human mesenchymal stem cells (hMSCs) have been proven to have inherent chondrogenic differentiation potential, which appears to be used in cartilage regeneration. Increasing evidence suggests that irisin enhances osteoblast differentiation of MSCs, but little is known about its potential on chondrogenic differentiation. METHODS: In the study, we investigated the effects of irisin on chondrogenic differentiation of hMSCs using a high-density pellet culture system. The cartilage pellets were evaluated by morphology, and the metabolism of cartilage matrix was detected by qPCR, western blot and immunohistochemistry. Next, RNA-seq was performed to explore the underlying mechanism. Furthermore, using the transduction of plasmid, miRNAs mimics and inhibitor, the activation of Rap1/PI3K/AKT axis, the expression level of SIPA1L2, and the functional verification of miR-125b-5p were detected on day 7 of chondrogenic differentiation of hMSCs. RESULTS: Compared with the controls, we found that irisin treatment could significantly enhance the chondrogenic differentiation of hMSCs, enlarge the induced-cartilage tissue and up-regulate the expression levels of cartilage markers. RNA-seq indicated that irisin activated the Rap1 and PI3K/AKT signaling pathway, and the lower expression level of SIPA1L2 and the higher expression level of miR-125b-5p were found in irisin-treated group. Further, we found that irisin treatment could up-regulate the expression level of miR-125b-5p, targeting SIPA1L2 and consequently activating the Rap1/PI3K/AKT axis on the process of chondrogenic differentiation of hMSCs. CONCLUSIONS: Collectively, our study reveals that irisin can enhance chondrogenic differentiation of hMSCs via the Rap1/PI3K/AKT pathway, suggesting that irisin possesses prospects in cartilage regeneration.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Células Cultivadas , Fibronectinas/metabolismo , Fibronectinas/farmacología , Humanos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
5.
Oxid Med Cell Longev ; 2022: 9684062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915608

RESUMEN

Unbalanced metabolism of an extracellular matrix (ECM) in nucleus pulposus cells (NPCs) is widely acknowledged as the primary cause of intervertebral disc degeneration (IDD). Irisin, a novel myokine, is cleaved from fibronectin type III domain-containing 5 (FNDC5) and has recently been proven to regulate the metabolism of ECM. However, little is known about its potential on NPCs and the development of IDD. Therefore, this study sought to examine the protective effects and molecular mechanism of irisin on IDD in vivo and in vitro. Decreased expression levels of FNDC5 and anabolism markers (COL2A1 and ACAN) but increased levels of catabolism markers (ADAMTS4) were found in degenerative nucleus pulposus (NP) tissues. In a punctured-induced rat IDD model, irisin treatment was found to significantly slow the development of IDD, and in TNF-α-stimulated NPCs, irisin treatment partly reversed the disorder of ECM metabolism. In mechanism, RNA-seq results suggested that irisin treatment affected the Hippo signaling pathway. Further studies revealed that with irisin treatment, the phosphorylation levels of key factors (LATS and YAP) were downregulated, while the expression level of CTGF was upregulated. Moreover, CTGF knockdown partially eliminated the protective effects of irisin on the metabolism of ECM in NPCs, including inhibiting the anabolism and promoting the catabolism. Taken together, this study demonstrated that the expression levels of FNDC5 were decreased in degenerative NP tissues, while irisin treatment promoted the anabolism, inhibited the catabolism of the ECM in NPCs, and delayed the progression of IDD via LATS/YAP/CTGF signaling. These results shed light on the protective actions of irisin on NPCs, leading to the development of a novel therapeutic target for treating IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Ratas , Factor de Crecimiento del Tejido Conjuntivo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Señalizadoras YAP
6.
Mol Ther ; 30(10): 3241-3256, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35619555

RESUMEN

Abnormal mechanical load is a main risk factor of intervertebral disc degeneration (IDD), and cellular senescence is a pathological change in IDD. In addition, extracellular matrix (ECM) stiffness promotes human nucleus pulposus cells (hNPCs) senescence. However, the molecular mechanism underlying mechano-induced cellular senescence and IDD progression is not yet fully elucidated. First, we demonstrated that mechano-stress promoted hNPCs senescence via NF-κB signaling. Subsequently, we identified periostin as the main mechano-responsive molecule in hNPCs through unbiased sequencing, which was transcriptionally upregulated by NF-κB p65; moreover, secreted periostin by senescent hNPCs further promoted senescence and upregulated the catabolic process in hNPCs through activating NF-κB, forming a positive loop. Both Postn (encoding periostin) knockdown via siRNA and periostin inactivation via neutralizing antibodies alleviated IDD and NPCs senescence. Furthermore, we found that mechano-stress initiated the positive feedback of NF-κB and periostin via PIEZO1. PIEZO1 activation by Yoda1 induced severe IDD in rat tails without compression, and Postn knockdown alleviated the Yoda1-induced IDD in vivo. Here, we reported for the first time that self-amplifying loop of NF-κB and periostin initiated via PIEZO1 under mechano-stress accelerated NPCs senescence, leading to IDD. Furthermore, periostin neutralizing antibodies, which may serve as potential therapeutic agents for IDD, interrupted this loop.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Anticuerpos Neutralizantes/metabolismo , Moléculas de Adhesión Celular , Senescencia Celular/genética , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Canales Iónicos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , ARN Interferente Pequeño/metabolismo , Ratas
7.
BMC Surg ; 22(1): 161, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538532

RESUMEN

BACKGROUND: With the widespread use of the posterior surgery, more and more surgeons chose posterior surgery to treat thoracic and lumbar tuberculosis. But others still believed that the anterior surgery is more conducive to eradicating the lesions, and easier to place larger bone pieces for bone graft fusion. We compared the clinical and radiological outcomes of anterior and posterior surgical approaches and presented our views. METHODS: This study included 52 thoracic and lumbar tuberculosis patients at Sun Yat-sen Memorial Hospital from January 2010 to June 2018. All cases underwent radical debridement, nerve decompression, intervertebral bone graft fusion and internal fixation. Cases were divided into anterior group (24 cases) and posterior group (28 cases). Statistical analysis was used to compare the clinical effectiveness, radiological outcomes, complications and other related information. RESULTS: Patients in the anterior group and the posterior group were followed up for an average of 27.4 and 22.3 months, respectively. There were no statistically significant differences between groups in the preoperative, postoperative and last follow-up VAS score, ASIA grade and Cobb angle of local kyphosis. Moreover, there were no statistically significant differences in the improvement of neurological function, loss of kyphotic correction, total incidence of complications, operative time, intraoperative blood loss and hospital stay between the two groups (P > 0.05). But there was greater correction of kyphosis, earlier bone fusion, lower incidence of poor wound healing, less interference with the normal spine and less internal fixation consumables and medical cost in the anterior group (P < 0.05). CONCLUSIONS: Both anterior and posterior approaches are feasible for thoracic and lumbar tuberculosis. While for thoracic and lumbar tuberculosis patients with a single lesion limited in the anterior and middle columns of the spine without severe kyphosis, the anterior approach surgery may have greater advantages in kyphosis correction, bone fusion, wound healing, protection of the normal spine, and medical consumables and cost.


Asunto(s)
Cifosis , Fusión Vertebral , Tuberculosis de la Columna Vertebral , Estudios de Casos y Controles , Desbridamiento , Humanos , Cifosis/cirugía , Vértebras Lumbares/cirugía , Estudios Retrospectivos , Vértebras Torácicas/cirugía , Resultado del Tratamiento , Tuberculosis de la Columna Vertebral/cirugía
8.
Int J Biol Sci ; 18(5): 2202-2219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342351

RESUMEN

Background: Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment. Methods: Western blotting, RT-qPCR and immunohistochemistry were used to detect the expression of melatonin membrane receptors (MTNR1A/B) and TNF-α in human NP tissues. In vitro, human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model was constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD. Results: The upregulation of TNF-α and downregulation of melatonin membrane receptors (MTNR1A/B) were observed in degenerative NP tissues. Then we demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α-impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α-induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells. Conclusions: Our results revealed that melatonin can reverse TNF-α-impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Melatonina , Núcleo Pulposo , Animales , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/farmacología , Humanos , Degeneración del Disco Intervertebral/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Ratas , Receptor de Melatonina MT2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Stem Cells Int ; 2022: 5865011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035490

RESUMEN

Intervertebral disc degeneration (IDD) is a degenerative disease that is characterized by decreased matrix synthesis and extra degradation, nucleus pulposus cells (NPCs) apoptosis, and infiltration of inflammatory factors. Aloin, a colored compound from aloe plants, has been shown to be effective against skeletal degenerative diseases, but it is unclear whether it is protective against IDD. Herein, we investigated the role of aloin in NPCs. In our study, the upregulation of proinflammatory factors, apoptosis, and unbalanced matrix metabolism were observed in degenerative NP tissues. We found that aloin had a curative effect on extracellular matrix metabolism and apoptosis in TNF-alpha- (TNF-α-) treated NPCs by inhibiting oxidative stress and the proinflammatory factor expression. Further investigation revealed that aloin treatment suppressed the TAK1/NF-κB pathway. Moreover, the expression level of the NLPR3 inflammasome was downregulated after aloin treatment in TNF-α-treated NPCs. In summary, our results demonstrated that aloin treatment can reverse TNF-α-induced unbalanced matrix metabolism and apoptosis of NPCs via the TAK1/NF-κB/NLRP3 axis. This study supports that aloin can be a promising therapeutic agent for IDD.

11.
Front Surg ; 9: 1089244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36969323

RESUMEN

Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.

13.
Cell Death Dis ; 12(10): 886, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584074

RESUMEN

Osteoarthritis (OA) is characterized by cartilage destruction, chronic inflammation, and local pain. Evidence showed that retinoic acid receptor-related orphan receptor-α (RORα) is crucial in cartilage development and OA pathogenesis. Here, we investigated the role and molecular mechanism of RORα, an important member of the nuclear receptor family, in regulating the development of OA pathologic features. Investigation into clinical cartilage specimens showed that RORα expression level is positively correlated with the severity of OA and cartilage damage. In an in vivo OA model induced by anterior crucial ligament transaction, intra-articular injection of si-Rora adenovirus reversed the cartilage damage. The expression of cartilage matrix components type II collagen and aggrecan were elevated upon RORα blockade. RNA-seq data suggested that the IL-6/STAT3 pathway is significantly downregulated, manifesting the reduced expression level of both IL-6 and phosphorylated STAT3. RORα exerted its effect on IL-6/STAT3 signaling in two different ways, including interaction with STAT3 and IL-6 promoter. Taken together, our findings indicated the pivotal role of the RORα/IL-6/STAT3 axis in OA progression and confirmed that RORα blockade improved the matrix catabolism in OA chondrocytes. These results may provide a potential treatment target in OA therapy.


Asunto(s)
Cartílago Articular/patología , Interleucina-6/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Anciano , Animales , Secuencia de Bases , Benzamidas/química , Benzamidas/farmacología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fluorocarburos/química , Fluorocarburos/farmacología , Humanos , Interleucina-6/genética , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Osteoartritis/genética , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Sulfonamidas/química , Sulfonamidas/farmacología , Tiofenos/química , Tiofenos/farmacología
14.
Mediators Inflamm ; 2021: 9954909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366712

RESUMEN

Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.


Asunto(s)
Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Señalizadoras YAP/biosíntesis , Proteína ADAMTS4/metabolismo , Anciano , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Colágeno Tipo II/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Fosforilación , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Tiofenos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
15.
Stem Cell Res Ther ; 12(1): 150, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632317

RESUMEN

BACKGROUND: Little is known about the implications of circRNAs in the effects of melatonin (MEL) on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoporosis (OP) progression. The aim of our study was to investigate circRNAs in MEL-regulated BMSC differentiation and OP progression. METHODS: BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red, and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade was validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on OP development were tested in murine OP model. RESULTS: MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSC osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSC proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model. CONCLUSION: MEL promotes BMSC osteogenic differentiation and inhibits OP pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Proteínas Ligadas a GPI , Melatonina/farmacología , Ratones , MicroARNs/genética , Osteogénesis , Osteoporosis/genética
16.
Exp Cell Res ; 388(2): 111838, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31930964

RESUMEN

The receptor tyrosine kinase MET plays a vital role in skeletal muscle development and in postnatal muscle regeneration. However, the effect of MET on myogenesis of myoblasts has not yet been fully understood. This study aimed to investigate the effects of MET on myogenesis in vivo and in vitro. Decreased myonuclei and down-regulated expression of myogenesis-related markers were observed in Met p.Y1232C mutant heterozygous mice. To explore the effects of MET on myoblast proliferation and differentiation, Met was overexpressed or interfered in C2C12 myoblast cells through the lentiviral transfection. The Met overexpression cells exhibited promotion in myoblast proliferation, while the Met deficiency cells showed impediment in proliferation. Moreover, myoblast differentiation was enhanced by the stable Met overexpression, but was impaired by Met deficiency. Furthermore, this study demonstrated that SU11274, an inhibitor of MET kinase activity, suppressed myoblast differentiation, suggesting that MET regulated the expression of myogenic regulatory factors (MRFs) and of desmin through the classical tyrosine kinase pathway. On the basis of the above findings, our work confirmed that MET promoted the proliferation and differentiation of myoblasts, deepening our understanding of the molecular mechanisms underlying muscle development.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Desarrollo de Músculos , Mioblastos/citología , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Células Cultivadas , Ratones , Mioblastos/metabolismo
17.
Stem Cells Int ; 2019: 6403967, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31582985

RESUMEN

Accumulation of reactive oxygen species (ROS), which can be induced by inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), can significantly inhibit the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This process can contribute to the imbalance of bone remodeling, which ultimately leads to osteoporosis. Therefore, reducing the ROS generation during osteogenesis of BMSCs may be an effective way to reverse the impairment of osteogenesis. Melatonin (MLT) has been reported to act as an antioxidant during cell proliferation and differentiation, but its antioxidant effect and mechanism of action during osteogenesis of MSCs in the inflammatory microenvironment, especially in the presence of TNF-α, remain unknown and need further study. In our study, we demonstrate that melatonin can counteract the generation of ROS and the inhibitory osteogenesis of BMSCs induced by TNF-α, by upregulating the expression of antioxidases and downregulating the expression of oxidases. Meanwhile, MLT can inhibit the phosphorylation of p65 protein and block the degradation of IκBα protein, thus decreasing the activity of the NF-κB pathway. This study confirmed that melatonin can inhibit the generation of ROS during osteogenic differentiation of BMSCs and reverse the inhibition of osteogenic differentiation of BMSCs in vitro, suggesting that melatonin can antagonize TNF-α-induced ROS generation and promote the great effect of osteogenic differentiation of BMSCs. Accordingly, these findings provide more evidence that melatonin can be used as a candidate drug for the treatment of osteoporosis.

18.
Mol Med ; 25(1): 43, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462213

RESUMEN

BACKGROUND: The protective effect of melatonin against bone metabolism imbalance in osteoporosis (OP) induced by drugs such as retinoic acid (RA) is unclear. The aim of this study was to explore the role of melatonin in bone destruction based on a mouse model. METHODS: RA-induced OP model mice were established. To assess the effect of melatonin on these mice, micro-CT was used to characterize the trabecular structure of normal mice and those treated with RA (model), RA + low-dose melatonin (Mlt-L), RA + high-dose melatonin (Mlt-H), and RA + alendronate sodium (positive control). The shape of the trabecular bone, the length and diameter of the femoral head and the height and diameter of vertebra(L1) of each group were also measured and the number of osteoclasts was determined by Tartrate-resistant acid phosphatase (TRACP) staining. Meanwhile, the expression of alkaline phosphatase (ALP) was evaluated by immunohistochemistry assays. The differences between groups in terms of liver and kidney oxidation-related indexes and serum and urinary indicators related to bone metabolism were also analyzed. Furthermore, qRT-PCR and western blotting were used to evaluate the effect of melatonin on osteogenic and osteoclastic differentiation in MC3T3-E1 and RAW264.7 cells, respectively. RESULTS: RA induction led to a decrease in the amount and density of trabecular bone, a decrease in the length and diameter of the femur and height, diameter of the vertebra (L1), a decrease in bone mass and density and the expression of ALP, and an increase in the number of osteoclasts. Melatonin treatment alleviated these effects induced by RA, increasing the amount of trabecular bone in OP mice, improving the microstructure of the femur and vertebra(L1) and increasing bone mass bone density and the expression of ALP, as well as decreasing the number of osteoclasts. Additionally, blood and urinary bone metabolism-related indicators showed that melatonin promoted bone formation and inhibited bone resorption. Determination of oxidant and antioxidant biomarkers in the livers and kidneys of the mice revealed that melatonin promoted the antioxidant level and suppressed the level of oxidant molecules in these organs. In vitro, RA promoted osteoclasts and inhibit osteogenesis by increasing oxidative stress levels in the RAW264.7 and MC3T3-E1 cells, but melatonin reversed this effect. Melatonin may, therefore, play a role in the ERK/SMAD and NF-κB pathways. CONCLUSIONS: Melatonin can alleviate bone loss in RA-induced OP model mice, repair the trabecular microstructure, and promote bone formation. These effects may be related to reducing oxidation levels in vivo and vitro through the ERK/SMAD and NF-κB pathways.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Melatonina/farmacología , Osteoporosis , Tretinoina/efectos adversos , Fosfatasa Alcalina/metabolismo , Animales , Hueso Esponjoso/citología , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/metabolismo , Femenino , Fémur/citología , Fémur/efectos de los fármacos , Fémur/metabolismo , Ratones , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7
19.
J Pineal Res ; 67(2): e12588, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31140197

RESUMEN

Chordoma is an extremely rare malignant bone tumor with a high rate of relapse. While cancer stem cells (CSCs) are closely associated with tumor recurrence, which depend on its capacity to self-renew and induce chemo-/radioresistance, whether and how CSCs participate in chordoma recurrence remains unclear. The current study found that tumor cells in recurrent chordoma displayed more dedifferentiated CSC-like properties than those in corresponding primary tumor tissues. Meanwhile, MTNR1B deletion along with melatonin receptor 1B (MTNR1B) down-regulation was observed in recurrent chordoma. Further investigation revealed that activation of Gαi2 by MTNR1B upon melatonin stimulation could inhibit SRC kinase activity via recruiting CSK and SRC, increasing SRC Y530 phosphorylation, and decreasing SRC Y419 phosphorylation. This subsequently suppressed ß-catenin signaling and stemness via decreasing ß-catenin p-Y86/Y333/Y654. However, MTNR1B loss in chordoma mediated increased CSC properties, chemoresistance, and tumor progression by releasing melatonin's repression of ß-catenin signaling. Clinically, MTNR1B deletion was found to correlate with patients' survival. Together, our study establishes a novel convergence between melatonin and ß-catenin signaling pathways and reveals the significance of this cross talk in chordoma recurrence. Besides, we propose that MTNR1B is a potential biomarker for prediction of chordoma prognosis and selection of treatment options, and chordoma patients might benefit from targeting MTNR1B/Gαi2/SRC/ß-catenin axis.


Asunto(s)
Biomarcadores de Tumor/deficiencia , Neoplasias Óseas/metabolismo , Condroma/metabolismo , Melatonina/farmacología , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Receptor de Melatonina MT2/deficiencia , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Condroma/tratamiento farmacológico , Condroma/genética , Condroma/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Receptor de Melatonina MT2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
20.
Bone Res ; 7: 8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854241

RESUMEN

Hypertrophic differentiation is not only the terminal process of endochondral ossification in the growth plate but is also an important pathological change in osteoarthritic cartilage. Collagen type II (COL2A1) was previously considered to be only a structural component of the cartilage matrix, but recently, it has been revealed to be an extracellular signaling molecule that can significantly suppress chondrocyte hypertrophy. However, the mechanisms by which COL2A1 regulates hypertrophic differentiation remain unclear. In our study, a Col2a1 p.Gly1170Ser mutant mouse model was constructed, and Col2a1 loss was demonstrated in homozygotes. Loss of Col2a1 was found to accelerate chondrocyte hypertrophy through the bone morphogenetic protein (BMP)-SMAD1 pathway. Upon interacting with COL2A1, integrin ß1 (ITGB1), the major receptor for COL2A1, competed with BMP receptors for binding to SMAD1 and then inhibited SMAD1 activation and nuclear import. COL2A1 could also activate ITGB1-induced ERK1/2 phosphorylation and, through ERK1/2-SMAD1 interaction, it further repressed SMAD1 activation, thus inhibiting BMP-SMAD1-mediated chondrocyte hypertrophy. Moreover, COL2A1 expression was downregulated, while chondrocyte hypertrophic markers and BMP-SMAD1 signaling activity were upregulated in degenerative human articular cartilage. Our study reveals novel mechanisms for the inhibition of chondrocyte hypertrophy by COL2A1 and suggests that the degradation and decrease in COL2A1 might initiate and promote osteoarthritis progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...