Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195693

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.

2.
J Clin Transl Hepatol ; 12(1): 36-51, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38250467

RESUMEN

Background and Aims: Development of fibrosis in chronic liver disease requires activation of hepatic stellate cells (HSCs) and leads to a poor outcome. Artesunate (Art) is an ester derivative of artemisinin that can induce ferroptosis in HSCs, and activated transcriptional factor 3 (ATF3) is an ATF/CREB transcription factor that is induced in response to stress. In this study, we examined the role of the Rho-associated protein kinase 1 (ROCK1)/ATF3 axis in Art-induced ferroptosis in HSCs. Methods: HSC activation and ferroptosis were studied in vitro by western blotting, polymerase chain reaction, immunofluorescence, and other assays. ATF3 electrophoretic mobility and ROCK1 protein stability were assayed by western blotting. Immunoprecipitation was used to detect the interaction of ROCK1 and ATF3, as well as ATF3 phosphorylation. A ubiquitination assay was used to verify ROCK1 degradation. Atf3-interfering and Rock1-overexpressing mice were constructed to validate the anti-hepatic fibrosis activity of Art in vivo. Results: Art induced ferroptosis in HSCs following glutathione-dependent antioxidant system inactivation resulting from nuclear accumulation of unphosphorylated ATF3 mediated by ROCK1-ubiquitination in vitro. Art also decreased carbon tetrachloride-induced liver fibrosis in mice, which was reversed by interfering with Atf3 or overexpressing Rock1. Conclusions: The ROCK1/ATF3 axis was involved in liver fibrosis and regulation of ferroptosis, which provides an experimental basis for further study of Art for the treatment of liver fibrosis.

3.
Redox Biol ; 69: 102971, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056309

RESUMEN

BACKGROUND & AIMS: Although ferroptosis holds promise as a new strategy for treating hepatocellular carcinoma (HCC), there are several obstacles that need to be overcome. One major challenge is the lack of understanding about the mechanisms underlying ferroptosis. Additionally, while the m6A modification has been shown to regulate various forms of cell death, its role in regulating ferroptosis in HCC has been largely overlooked. Bridging this knowledge gap, our study aimed to elucidate the regulatory influence of m6A modification on HCC ferroptosis. MATERIALS: Dot blot and EpiQuik m6A RNA Methylation Quantitative kit detected changes in overall m6A modification level during ferroptosis in HCC. MeRIP-qPCR and RIP-qPCR identified that the m6A modification of ATG5 mRNA was significant changed. BALB/c nude mice were used to construct xenograft tumor models to verify the phenotypes upon YTHDC2 silencing. In addition, patient-derived organoid models were used to demonstrate that induction of ferroptosis was an effective strategy against HCC. RESULTS: Our study has shown that inducing ferroptosis is a promising strategy for combatting HCC. Specifically, we have found a significant correlation between ferroptosis and high levels of m6A modification in HCC. Notably, we discovered that the elevation of ATG5 mRNA m6A modification mediated by WTAP is dependent on the reading protein YTHDC2. Importantly, inhibition of either WTAP or YTHDC2 effectively prevented ferroptosis and suppressed HCC development in both in vitro and in vivo models. CONCLUSION: Our study revealed that WTAP upregulates ATG5 expression post-transcriptionally in an m6A-YTHDC2-dependent manner, thereby promoting the translation of ATG5 mRNA during ferroptosis in HCC. These findings have significant implications for the development of innovative and effective therapeutic approaches for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/genética , Ferroptosis/genética , Ratones Desnudos , Neoplasias Hepáticas/genética , Autofagia/genética , Modelos Animales de Enfermedad , ARN Mensajero
4.
Front Pharmacol ; 13: 1042651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339568

RESUMEN

Chronic pancreatitis (CP) is a precancerous illness linked to pancreatic ductal adenocarcinoma (PDAC), although the evolutionary mechanism is uncertain. CP is distinguished by severe fibrosis caused by the activation of pancreatic stellate cells (PSCs). The current clinical therapeutic protocol for CP lacks specific therapeutic medicines for the prevention and suppression of inflammation and fibrosis aggravating in CP. More research on specifically targeting PSCs would help facilitate the development of novel therapies for pancreatic fibrosis. Notably, using natural compounds from medicinal plants as new antifibrotic agents has become a focus of recent research and is widely employed as an alternative and complementary approach. Our goal was to shed light on the role of PSCs in the development of CP and provide a focused update on the new potential therapeutic strategies against PSCs in CP models. Future studies can refer to these possible strategies for drug design, bioavailability, pharmacokinetics, and other issues to obtain better clinical outcomes for treating CP.

5.
Free Radic Biol Med ; 182: 246-259, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35248719

RESUMEN

Activation of hepatic stellate cells (HSCs) is a central event in the development of liver fibrosis, and the elimination of activated HSCs is considered to be an effective anti-fibrotic strategy. Here, we report that dihydroartemisinin (DHA) prevented the activation of HSCs via ferroptosis pathway. Importantly, DHA treatment increased the level of autophagy in HSCs. The inhibition of autophagy by 3-MA dramatically abolished the DHA-induced ferroptosis in HSCs. Mechanistically, the up-regulated m6A modification is essential for the activation of autophagy by DHA through the reduction of fat mass and obesity-associated gene (FTO). Down-regulation of m6A modification by FTO overexpression could impair autophagy and the classical ferroptotic events. Interestingly, the m6A modification of BECN1 mRNA was evidently up-regulated compared with other autophagy-related genes. More importantly, YTHDF1 was identified as a key m6A reader protein for BECN1 mRNA stability, and knockdown of YTHDF1 could prevent DHA-induced HSC ferroptosis. Noteworthy, YTH domain was essential for YTHDF1 to prolong the half-life of BECN1 mRNA in DHA-induced HSC ferroptosis. In mice, DHA treatment alleviated liver fibrosis by triggering HSC ferroptosis. HSC-specific inhibition of m6A modification and autophagy could impair DHA-induced HSC ferroptosis in murine liver fibrosis. Overall, these results provided novel implications to reveal the molecular mechanism of DHA-induced ferroptosis, by which pointed to m6A modification-dependent ferroptosis as a potential target for the treatment of liver fibrosis.


Asunto(s)
Ferroptosis , Células Estrelladas Hepáticas , Animales , Artemisininas , Autofagia , Ferroptosis/genética , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Metilación , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...