Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 668: 190-201, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677208

RESUMEN

The recycling of spent lithium-ion batteries (LIBs) has received increasing attention for environment and resource reclamation. Converting LIBs wastes into high-efficiency catalysts is a win-win strategy for realizing resource reclamation and addressing sustainable energy challenges. Herein, we developed a simple method to upcycle spent-LIBs cathode powder into Co-doped NiFe carbonate hydroxide hydrate (Co/NFCH-FF) as a low-cost and efficient oxygen evolution reaction (OER) electrocatalyst. The optimized Co/NFCH-FF electrode appears very competitive OER performances with low overpotentials of 201 and 249 mV at 10 and 100 mA cm-2, respectively, a small Tafel slope of 48.4 mV dec-1, and a high long-term stability. Moreover, we reveal that the existence of Co atoms leads to the formation of a crystalline/amorphous (c/a) interface at the Co/NFCH nanosheet edge, inducing the nanosheets possess a unique edge effect to enhance electric fields and accumulate hydroxide ions (OH-) at the edge during the OER process. Benefiting from edge effect, Co/NFCH-FF shows outstanding intrinsic activity. Furthermore, Co atoms as dopants stabilize the electronic structure of Co/NFCH-FF, enabling Co/NFCH-FF to exhibit excellent catalytic stability. This work provides an effective strategy for converting the end-life LIBs to high-performance multicomponent OER electrocatalysts and proposes new insights into the mechanism of enhanced catalytic activity of Co/NFCH.

2.
Adv Mater ; 35(22): e2302627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37259701

RESUMEN

Adv. Mater. 2018, 30, 1705796 https://doi.org/10.1002/adma.201705796 The above article, published online on January 15, 2018, in Wiley Online Library (https://doi.org/10.1002/adma.201705796), has been retracted by agreement between the authors, the journal Editor in Chief Jos Lenders, and Wiley-VCH GmbH. The retraction has been agreed on following concerns raised by a third party and a subsequent investigation at Wake Forest University. Data integrity issues were found in Figures 1a, S2b, and S17. As a result, the authors consider the conclusions of this article invalid.

3.
Adv Mater ; 35(22): e2302628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37259702

RESUMEN

Adv. Mater. 2019, 31, 1900813. https://doi.org/10.1002/adma.201900813 The above article, published online on May 6, 2019, in Wiley Online Library (https://doi.org/10.1002/adma.201900813), has been retracted by agreement between the authors, the journal Editor in Chief Jos Lenders, and Wiley-VCH GmbH. The retraction has been agreed on following concerns raised by a third party and a subsequent investigation at Wake Forest University. Data integrity issues were found in Figures 2c, 4d, S13a, S13b, S15, and S37. As a result, the authors consider the conclusions of this article invalid.

5.
Small ; 18(25): e2202071, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35607293

RESUMEN

The development of low-Pt catalysts with high activity and durability is critical for fuel cells. Here, Pt-skin wrapped sub-5 nm PtCo intermetallic nanoparticles are successfully mounted on single atom Co-N-C support by exploiting the barrier effect of Co-anchor. According to a collaborative experimental and computational investigation, the increased oxygen reduction reaction activity of PtCo/Co-N-C arises from the direct electron transfer from PtCo to Co-N-C, and the resulting optimal d-band center of Pt. Owing to such unique electronic structure interaction and synergistic effect, the specific and mass activities of PtCo/Co-N-C are up to 4.20 mA cm-2 and 2.71 A mgPt-1 , respectively, with barely degraded stability after 40 000 CV cycles. The PtCo/Co-N-C also exhibits outstanding activity as an ethanol electrocatalyst. This work shows a new and effective route to boost the overall efficiency of direct ethanol fuel cells in acidic media by integrating intermetallic low-Pt alloys and single atom carbon support.


Asunto(s)
Nanopartículas , Platino (Metal) , Electrónica , Etanol , Oxidación-Reducción , Oxígeno/química , Platino (Metal)/química
6.
Nanoscale ; 14(21): 7768-7777, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603980

RESUMEN

Development of a composite electrolyte with high ionic conductivity, excellent electrochemical stability and preeminent mechanical strength is beneficial for suppressing Li-dendrite penetration and unstable interfacial reactions in solid-state Li-metal batteries. Herein, a novel composite electrolyte material comprising perovskite Li0.485La0.505TiO3 (LLTO), poly(ethylene oxide) (PEO), and a barium titanate (BTO)-polyimide (PI) composite matrix has been successfully fabricated. Benefiting from the well-defined ion channels, the resulting BTO-PI@LLTO-PEO-FEC-LiTFSI (BP@LPFL) exhibits excellent cycling stability, low interfacial resistance, enhanced mechanical strength, and high ionic conductivity. Particularly, BP@LPFL possesses an excellent ionic conductivity of 3.0 × 10-4 S cm-1 at room temperature and achieves a wide electrochemical window of 5.2 V (vs. Li+/Li). For Li-LiFePO4 batteries, such an ingenious structure yields a discharge capacity of 124 mA h g-1 at 0.1 C after 200 cycles at room temperature and delivers a discharge capacity of 165 mA h g-1 at 0.1 C after 110 cycles at 60 °C. Additionally, the symmetric Li cell remains stable after 700 h at a current density of 0.5 mA cm-2. Furthermore, ex situ X-ray photoelectron spectroscopy and ex situ scanning electron microscopy were used to verify the interface evolution. Besides, a flexible full battery is fabricated, which exhibits impressive performance. These properties presented here provide support for BP@LPFL as a feasible candidate electrolyte for solid-state lithium batteries.

7.
Nanoscale ; 14(22): 8200-8201, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640163

RESUMEN

Correction for 'Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity' by Chang Lu et al., Nanoscale, 2020, 12, 2987-2991, https://doi.org/10.1039/C9NR07722G.

8.
Nat Commun ; 13(1): 2031, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440112

RESUMEN

All solid-state lithium batteries (SSLBs) are poised to have higher energy density and better safety than current liquid-based Li-ion batteries, but a central requirement is effective ionic conduction pathways throughout the entire cell. Here we develop a catholyte based on an emerging class of porous materials, porous organic cages (POCs). A key feature of these Li+ conducting POCs is their solution-processibility. They can be dissolved in a cathode slurry, which allows the fabrication of solid-state cathodes using the conventional slurry coating method. These Li+ conducting cages recrystallize and grow on the surface of the cathode particles during the coating process and are therefore dispersed uniformly in the slurry-coated cathodes to form a highly effective ion-conducting network. This catholyte is shown to be compatible with cathode active materials such as LiFePO4, LiCoO2 and LiNi0.5Co0.2Mn0.3O2, and results in SSLBs with decent electrochemical performance at room temperature.

9.
Angew Chem Int Ed Engl ; 60(47): 24838-24843, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34543499

RESUMEN

Catalysts based on Cu nanocrystals (NCs) for electrochemical CO2 -to-C2+ conversion with high activity have been a subject of considerable interest, but poor stability and low selectivity for a single C2+ product remain obstacles for realizing sustainable carbon-neutral cycles. Here, we used the facet-selective atomic layer deposition (FS-ALD) technique to selectively cover the (111) surface of Cu NCs with ultrathin Al2 O3 to increase the exposed facet ratio of (100)/(111), resulting in a faradaic efficiency ratio of C2 H4 /CH4 for overcoated Cu NCs 22 times higher than that for pure Cu NCs. Peak performance of the overcoated catalyst (Cu NCs/Al2 O3 -10C) reaches a C2 H4 faradaic efficiency of 60.4 % at a current density of 300 mA cm-2 in 5 M KOH electrolyte, when using a gas diffusion electrode flow cell. Moreover, the Al2 O3 overcoating effectively suppresses the dynamic mobility and the aggregation of Cu NCs, which explains the negligible activity loss and selectivity degradations of Cu NCs/Al2 O3 -10C shown in stability tests.

10.
Nat Commun ; 12(1): 1380, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654075

RESUMEN

Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS2 nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)x) are successively grown on carbon fibers (CF/VGSs/MoS2/FeCoNi(OH)x). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm-2 and small Tafel slope of 29.2 mV dec-1. Theoretical calculation indicates that compositing of FeCoNi(OH)x with MoS2 could generate favorable electronic structure and decrease the OER overpotential, promoting the electrocatalytic activity. An alkaline water electrolyzer is established using CF/VGSs/MoS2/FeCoNi(OH)x anode for overall water splitting, which generates a current density of 100 mA cm-2 at 1.59 V with excellent stability over 100 h. Our highly efficient catalysts have great prospect for water electrolysis.

11.
ACS Appl Mater Interfaces ; 13(2): 2979-2987, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33350815

RESUMEN

Recently, silver nanowire-based transparent conductive films (AgNW-based TCFs) with excellent comprehensive performance have aroused wide and great interest. However, it is always difficult to simultaneously improve the performances of TCFs in all aspects. In this work, by introducing silica nanoparticles (SiO2-NPs) with a smaller particle size, several properties of AgNW-based TCFs were optimized successfully. The transmittance and conductivity were improved simultaneously, and smaller particle size was proven to be more suitable to achieve TCFs with excellent optoelectrical properties. Typically, an AgNW/SiO2-based TCF with a sheet resistance of 250 Ω/sq and transmittance of 93.6% (including the poly (ethylene terephthalate) substrate, abbreviated as PET) could be obtained by using SiO2-NPs with a size of ∼21 nm, and this transmittance is even higher than that of the bare PET (91.8%) substrate. We demonstrated that the layer formed through self-assembly of SiO2-NPs can cut down the light scattering on the AgNW surface through total reflection, thus leading to a low haze of AgNW/SiO2-based TCFs. Very interestingly, the SiO2-NPs conducted away most of the heat generated during laser ablation, protecting the AgNWs from excessive melt and PET from empyrosis, and thus ensuring the TCFs with high transmittance and patterning accuracy. Besides, AgNW/SiO2-based TCFs have smaller surface roughness, better flexibility, and adhesive force. To the best of our knowledge, the comprehensive performance of the AgNW/SiO2-based TCFs reaches the highest level among recently reported novel TCFs.

12.
Nat Commun ; 11(1): 3928, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764644

RESUMEN

Despite progress in small scale electrocatalytic production of hydrogen peroxide (H2O2) using a rotating ring-disk electrode, further work is needed to develop a non-toxic, selective, and stable O2-to-H2O2 electrocatalyst for realizing continuous on-site production of neutral hydrogen peroxide. We report ultrasmall and monodisperse colloidal PtP2 nanocrystals that achieve H2O2 production at near zero-overpotential with near unity H2O2 selectivity at 0.27 V vs. RHE. Density functional theory calculations indicate that P promotes hydrogenation of OOH* to H2O2 by weakening the Pt-OOH* bond and suppressing the dissociative OOH* to O* pathway. Atomic layer deposition of Al2O3 prevents NC aggregation and enables application in a polymer electrolyte membrane fuel cell (PEMFC) with a maximum r(H2O2) of 2.26 mmol h-1 cm-2 and a current efficiency of 78.8% even at a high current density of 150 mA cm-2. Catalyst stability enables an accumulated neutral H2O2 concentration in 600 mL of 3.0 wt% (pH = 6.6).

13.
Nanoscale ; 12(5): 2987-2991, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31995081

RESUMEN

A synthetic method for uniform and pure Cs3Sb2Br9 NCs has been developed. Cs3Sb2Br9 NCs exhibit a 10-fold increase in activity for the photocatalytic CO2 reduction reaction compared to CsPbBr3 NCs, achieving 510 µmol CO g-1 cat. after 4 h. Density functional theory shows that Cs3Sb2Br9 surfaces sufficiently expose Sb to allow reactivity, as opposed to the unreactive CsPbBr3 surface.

14.
ACS Appl Mater Interfaces ; 12(7): 8168-8175, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986006

RESUMEN

Li metal is considered the most promising anode for high energy density secondary batteries due to its high theoretical capacity and low redox potential. However, lithium is prone to form dendrites which will not only cause internal short-circuits but also bring accumulation of "dead Li" and result in fast capacity decay, thus its large-scale application is challenging. In this work, we demonstrate that the commonly used metal corrosion inhibitor, benzotriazole (BTA), can be used to modify the Cu foil surface and guide homogeneous Li+ plating/stripping due to the lithiophilic nature of the N atom in the BTA molecule. As a result, the lithium plated on the BTA modified Cu (BTA-Cu) substrate is free of dendrites, and a Coulombic efficiency (CE) as high as 99.0% was achieved for Li+ plating/stripping on the BTA-Cu substrate at a current density of 1 mA/cm2. Furthermore, the BTA-Cu foil can be used as an anode to assemble an anode-free cell (BTA-Cu∥LFP), and ∼73.3% of the initial capacity can be obtained after 50 cycles. Last but not the least, a BTA-Cu@Li electrode prepared by plating of Li+ on the BTA-Cu substrate can serve as a stable Li anode in a BTA-Cu@Li∥LFP cell and display an average cycled CE of 98.5% at a depth of discharge (DOD) of 33%. This simple method of Li+ plating/stripping behavior regulation could inspire researchers on the development of highly stable lithium metal anodes for high energy density batteries.

15.
Chemosphere ; 245: 125607, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31884174

RESUMEN

The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostructure for the observation of HER. The porosity of GF not only provides an optimized diffusion coefficient for better mass transport but also modified surface chemistry (GF/GO-hydrophobic/hydrophilic interface), which results in an onset potential 50 mV and overpotential of 450 mV to achieve the current density 10 mA/cm2. The surface analysis shows that inherent functional groups at the surface played a key role in tuning the activity of hybrid, providing a pathway to introduce non-corrosive electrodes for water splitting.


Asunto(s)
Carbono/química , Grafito/química , Hidrógeno/química , Interacciones Hidrofóbicas e Hidrofílicas , Catálisis , Electrodos , Porosidad , Agua/química
16.
Nat Commun ; 10(1): 5724, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844056

RESUMEN

Production of syngas with tunable CO/H2 ratio from renewable resources is an ideal way to provide a carbon-neutral feedstock for liquid fuel production. Ag is a benchmark electrocatalysts for CO2-to-CO conversion but high overpotential limits the efficiency. We synthesize AgP2 nanocrystals (NCs) with a greater than 3-fold reduction in overpotential for electrochemical CO2-to-CO reduction compared to Ag and greatly enhanced stability. Density functional theory calculations reveal a significant energy barrier decrease in the formate intermediate formation step. In situ X-ray absorption spectroscopy (XAS) shows that a maximum Faradaic efficiency is achieved at an average silver valence state of +1.08 in AgP2 NCs. A photocathode consisting of a n+p-Si wafer coated with ultrathin Al2O3 and AgP2 NCs achieves an onset potential of 0.2 V vs. RHE for CO production and a partial photocurrent density for CO at -0.11 V vs. RHE (j-0.11, CO) of -3.2 mA cm-2.

17.
Adv Mater ; 31(24): e1900813, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31058405

RESUMEN

Developing earth-abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high-performance solar-to-hydrogen energy conversion process. Herein, phosphorus-rich colloidal cobalt diphosphide nanocrystals (CoP2 NCs) are synthesized via hot injection. The CoP2 NCs show a Pt-like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve -10 mA cm-2 and a very low Tafel slope of 32 mV dec-1 . Density functional theory (DFT) calculations reveal that the high P content both physically separates Co atoms to prevent H from over binding to multiple Co atoms, while simultaneously stabilizing H adsorbed to single Co atoms. The catalytic performance of the CoP2 NCs is further demonstrated in a metal-insulator-semiconductor photoelectrochemical device consisting of bottom p-Si light absorber, atomic layer deposition Al-ZnO passivation layers, and the CoP2 cocatalyst. The p-Si/AZO/TiO2 /CoP2 photocathode shows a photocurrent density of -16.7 mA cm-2 at 0 V versus reversible hydrogen electrode (RHE) and an output photovoltage of 0.54 V. The high performance and stability are attributed to the junction between p-Si and AZO, the corrosion-resistance of the pinhole-free TiO2 protective layer, and the fast HER kinetics of the CoP2 NCs.

18.
ACS Cent Sci ; 5(3): 468-476, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30937374

RESUMEN

Li metal has long been considered as the ultimate anodic material for high-energy-density batteries. Protection of Li metal in electrochemical cycling and in the manufacturing environment is critical for practical applications. Here, we present the passivation of the Li metal-carbon nanotube (CNT) composite with molecular self-assembly of a long-chain aliphatic phosphonic acid. The dynamics of the self-assembly process is investigated with sum-frequency generation spectroscopy (SFG). The aliphatic phosphonic acid molecules self-assemble on the Li metal surface via the lithium phosphate bonding, while the well-aligned long chains of the molecules help to prevent corrosion of lithium by oxygen and water in the air. As a result, the self-assembled monolayer (SAM) passivated Li-CNT composite displays excellent stability in dry or even humid air, and could be slurry-coated with organic solvents. The resulting slurry-coated Li anode exhibits a high Coulombic efficiency of 98.8% under a 33% depth of discharge (DOD) at a 1C rate in full battery cycling. The concept of molecular self-assembly on Li metal and the stability of the resulting SAM layer open vast possibilities of designed reagents for surface passivation of Li, which may eventually pave the way for practical application of Li metal in secondary batteries.

19.
ACS Appl Mater Interfaces ; 10(20): 17129-17139, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29712425

RESUMEN

Colloidal semiconductor quantum dot (CQD)-based photocathodes for solar-driven hydrogen evolution have attracted significant attention because of their tunable size, nanostructured morphology, crystalline orientation, and band gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm2 (AM-1.5G, 100 mW/cm2) at a potential of 0 V versus reversible hydrogen electrode (RHE) ( j0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V versus RHE and long-term stability with negligible degradation. In the acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited because of photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j0 of -2.14 mA/cm2 is obtained with only 8.3% activity degradation after 6 h, compared with 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge-transfer rate, and faster reaction kinetics. We believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.

20.
Adv Mater ; 30(9)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29334145

RESUMEN

Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co2 P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co2 P NCs show higher OER performance owing to easier formation of plentiful Co2 P@COOH heterojunctions. Density functional theory calculation results indicate that the desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co2 P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co2 P NC anode can achieve a current density of 10 mA cm-2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO2 /C pair. Furthermore, the CoP NCs are employed as an air cathode in a primary zinc-air battery, exhibiting a high power density of 62 mW cm-2 and good stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...