Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747706

RESUMEN

Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Animales , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Ciclo Celular , Regeneración Hepática/genética , Regulación de la Expresión Génica
2.
Adv Sci (Weinh) ; : e2307818, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613835

RESUMEN

Hypercholesterolaemia is a systemic metabolic disease, but the role of organs other than liver in cholesterol metabolism is unappreciated. The phenotypic characterization of the Tsc1Dmp1 mice reveal that genetic depletion of tuberous sclerosis complex 1 (TSC1) in osteocytes/osteoblasts (Dmp1-Cre) triggers progressive increase in serum cholesterol level. The resulting cholesterol metabolic dysregulation is shown to be associated with upregulation and elevation of serum amyloid A3 (SAA3), a lipid metabolism related factor, in the bone and serum respectively. SAA3, elicited from the bone, bound to toll-like receptor 4 (TLR4) on hepatocytes to phosphorylate c-Jun, and caused impeded conversion of cholesterol to bile acids via suppression on cholesterol 7 α-hydroxylase (Cyp7a1) expression. Ablation of Saa3 in Tsc1Dmp1 mice prevented the CYP7A1 reduction in liver and cholesterol elevation in serum. These results expand the understanding of bone function and hepatic regulation of cholesterol metabolism and uncover a potential therapeutic use of pharmacological modulation of SAA3 in hypercholesterolaemia.

4.
Blood ; 141(26): 3184-3198, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37001042

RESUMEN

The bone marrow microenvironment supports leukocyte mobilization and differentiation and controls the development of leukemias, including acute myeloid leukemia (AML). Here, we found that the development of AML xenotransplants was suppressed in mice with osteoclasts tuberous sclerosis 1 (Tsc1) deletion. Tsc1-deficient osteoclasts released a high level of interleukin-34 (IL-34), which efficiently induced AML cell differentiation and prevented AML progression in various preclinical models. Conversely, AML development was accelerated in mice deficient in IL-34. Interestingly, IL-34 inhibited AML independent of its known receptors but bound directly to triggering receptor expressed on myeloid cells 2 (TREM2), a key hub of immune signals. TREM2-deficient AML cells and normal myeloid cells were resistant to IL-34 treatment. Mechanistically, IL-34-TREM2 binding rapidly phosphorylated Ras protein activator like 3 and inactivated extracellular signal-regulated protein kinase 1/2 signaling to prevent AML cell proliferation and stimulate differentiation. Furthermore, TREM2 was downregulated in patients with AML and associated with a poor prognosis. This study identified TREM2 as a novel receptor for IL-34, indicating a promising strategy for overcoming AML differentiation blockade in patients with AML.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Ratones , Médula Ósea/metabolismo , Proteínas Portadoras/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Microambiente Tumoral
5.
Dev Cell ; 58(3): 192-210.e11, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36696903

RESUMEN

Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.


Asunto(s)
Neoplasias Óseas , Cromotripsis , Osteosarcoma , Animales , Humanos , Ratones , Carcinogénesis , Inestabilidad Cromosómica , Proteínas Activadoras de GTPasa/metabolismo , Cinetocoros/metabolismo , Mitosis
6.
Biomed Pharmacother ; 154: 113566, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35994820

RESUMEN

To identify therapeutic targets in acute myeloid leukemia (AML), we conducted growth inhibition screens of 2040 small molecules from a library of FDA-approved drugs using a panel of 12 AML cell lines. Tegaserod maleate, a 5-hydroxytryptamine 4 receptor partial agonist, elicits strong anti-AML effects in vitro and in vivo by targeting transient receptor potential melastatin subtype 8 (TRPM8), which plays critical roles in several important processes. However, the role of TRPM8 remains incompletely described in AML, whose treatment is based mostly on antimitotic chemotherapy. Here, we report an unexpected role of TRPM8 in leukemogenesis. Strikingly, TRPM8 knockout inhibits AML cell survival/proliferation by promoting apoptosis. Mechanistically, TRPM8 exerts its oncogenic effect by regulating the ERK-CREB/c-Fos signaling axis. Hyperactivation of ERK signaling can be reversed by TRPM8 inhibition. Importantly, TRPM8 is overexpressed in AML patients, indicating that it is a new prognostic factor in AML. Collectively, our work demonstrates the anti-AML effects of tegaserod maleate via targeting TRPM8 and indicates that TRPM8 is a regulator of leukemogenesis with therapeutic potential in AML.


Asunto(s)
Leucemia Mieloide Aguda , Canales Catiónicos TRPM , Apoptosis , Carcinogénesis , Proliferación Celular , Supervivencia Celular , Humanos , Indoles , Leucemia Mieloide Aguda/metabolismo , Proteínas de la Membrana/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301883

RESUMEN

Tuberous sclerosis complex 1 (Tsc1) is a tumor suppressor that functions together with Tsc2 to negatively regulate the mechanistic target of rapamycin complex 1 (mTORC1) activity. Here, we show that Tsc1 has a critical role in the tight junction (TJ) formation of epithelium, independent of its role in Tsc2 and mTORC1 regulation. When an epithelial cell establishes contact with neighboring cells, Tsc1, but not Tsc2, migrates from the cytoplasm to junctional membranes, in which it binds myosin 6 to anchor the perijunctional actin cytoskeleton to ß-catenin and ZO-1. In its absence, perijunctional actin cytoskeleton fails to form. In mice, intestine-specific or inducible, whole-body Tsc1 ablation disrupts adherens junction/TJ structures in intestine or skin epithelia, respectively, causing Crohn's disease-like symptoms in the intestine or psoriasis-like phenotypes on the skin. In patients with Crohn's disease or psoriasis, junctional Tsc1 levels in epithelial tissues are markedly reduced, concomitant with the TJ structure impairment, suggesting that Tsc1 deficiency may underlie TJ-related diseases. These findings establish an essential role of Tsc1 in the formation of cell junctions and underpin its association with TJ-related human diseases.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Enfermedad de Crohn/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Psoriasis/patología , Uniones Estrechas/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/fisiología , Citoesqueleto de Actina/genética , Animales , Estudios de Casos y Controles , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Noqueados , Psoriasis/genética , Psoriasis/metabolismo , Transducción de Señal , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...