Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 28(55): e202201664, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35796204

RESUMEN

Mesoscopic aggregate is important to transfer or even amplify the molecular information in macroscopic materials. As an important branch of aggregate science, aggregation-induced emissive luminogens (AIEgens) often show slight or even no emission in solutions but exhibit bright emission when they aggregate, which open a new avenue for the practical applications. Due to the flexible and rotor structure of AIEgens, the aggregate structure of AIEgens is highly sensitive to the surrounding microenvironment, resulting in adjustable optical properties. Fibers integrated of a multiplicity of functional components are ideal carriers to control the aggregation processes, further assembly of fibers produces large-scale fabrics with amplified functions and practical values. In this Concept article, we focus on the latest advances on the synergy between "AIE+Fiber" for the boosted performance that beyond AIE, and their applications are presented and abstracted out to stimulate new ideas for developing "AIE+Fiber" systems.

2.
Biomaterials ; 287: 121666, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35835002

RESUMEN

Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA