Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 86(5): 1284-1298, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36358061

RESUMEN

A quinoline-degrading strain, C2, which could completely degrade 250 mg/L of quinoline within 24 h, was isolated from coking wastewater. Strain C2 was identified as Ochrobactrum sp. on the basis of 16S rDNA sequence analysis According to 16S rDNA gene sequence analysis, Strain C2 was identified as Ochrobactrum sp. Strain C2 could utilize quinoline as the sole carbon sources and nitrogen sources to grow and degrade quinoline well under acidic conditions. The optimum inoculum concentration, temperature and shaking speed for quinoline degradation were 10%, 30 °C and 150 r/min, respectively. The degradation of quinoline at low concentration by the strain followed the first-order kinetic model. The growth process of strain C2 was more consistent with the Haldane model than the Monod model, and the kinetic parameters were: Vmax = 0.08 h-1, Ks = 131.5 mg/L, Ki = 183.1 mg/L. Compared with suspended strains, strain C2 immobilized by sodium alginate had better degradation efficiency of quinoline and COD. The metabolic pathway of quinoline by Strain C2 was tentatively proposed, quinoline was firstly converted into 2(1H) quinolone, then the benzene ring was opened with the action of catechol 1,2-dioxygenase and subsequently transformed into benzaldehyde, 2-pentanone, hydroxyphenyl propionic acid and others.


Asunto(s)
Ochrobactrum , Quinolinas , Ochrobactrum/genética , Ochrobactrum/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Biodegradación Ambiental , ADN Ribosómico
2.
Environ Res ; 214(Pt 2): 113822, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35803340

RESUMEN

Currently, understanding the structure and function of the microbial community is the key step in artificially constructing microbial communities to control soil heavy metal pollution. Abundant/rare microbial communities play different roles in different levels of concentrations. However, the correlation between heavy metals and rare/abundant subgroups is poorly understood. In this study, we used a metagenomics approach to comprehensively investigate the evolutionary changes in microbial diversity, structure, and function under different heavy metal concentration stress in soils surrounding gold tailings. The results show that the main pollutants were Pb, As, and Zn. Indigenous microorganisms have different responses to heavy metal concentrations. Bacteria are the main components of indigenous microorganisms, mainly including Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. With the increase of heavy metal pollution, the relative abundance of Proteobacteria increased, and that of Actinobacteria decreased. Archaea was significantly inhibited by heavy metal stress and was more sensitive to heavy metal concentration. The response of fungi to heavy metal concentration was not obvious. The results of KEGG pathways showed that carbon fixation was inhibited with increasing heavy metal concentrations, while nitrogen metabolism was in contrast. Abundant subcommunity had a greater correlation mainly with metal resistance mechanisms, and rare subcommunity plays a key role for soil nutrient cycling such as N, S cycling in soils contaminated. Overall, this study provides a comprehensive analysis of the effects of heavy metal stress at different concentrations on microorganisms in farmland around gold tailings and reveals the relationship between heavy metals on KEGG pathways.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Bacterias , Oro/análisis , Oro/metabolismo , Oro/farmacología , Metales Pesados/análisis , Metales Pesados/toxicidad , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 775: 144946, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33618300

RESUMEN

Ureolytic microorganisms, a kind of microorganism which can secrete urease and decompose urea, have great potential in remediation of soil heavy metals based on microbial induced carbonate precipitation. However, the horizontal and vertical distribution of ureolytic microbial community in heavy metals contaminated soils is poorly understood. In this study, urease genes in agricultural soils surrounding tailings were first investigated using metagenomic in two dimensions: heavy metal pollution (Low-L, Middle-M, High-H) and soil depth (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm). Results showed that the effect of heavy metal concentration on ureolytic microorganisms was indeed significant, while the changes of ureolytic microorganisms with increasing soil depth varied in the vertical direction at the same level of heavy metal contamination. H site had the highest diversity of ureolytic microorganisms except for the topsoil. And at the same heavy metal contamination level, the ureolytic microbial diversity was lower in deeper soils. Proteobacteria, Actinobacteria and Thaumarchaeota (Archaea) were the dominant phyla of ureolytic microorganisms in all three sites, accounting for more than 80% of the total. However, the respond to the heavy metal concentrations of three phyla were different, which were increasing, decreasing and essentially unchanged, respectively. Besides, other environmental factors such as SOM and pH had different effects on ureolytic microorganisms, with Proteobacteria being positively correlated and Actinobacteria being the opposite. Another phenomenon was that Actinobacteria and Verrucomicrobia were biomarkers of group L, which could significantly explain the difference with the other two sites. These results provided valuable information for further research on the response mechanism and remediation of heavy metal pollution by ureolytic microbial system.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Granjas , Metales Pesados/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
4.
J Med Chem ; 64(1): 385-403, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33382613

RESUMEN

Synthetic cannabinoids, as exemplified by SDB-001 (1), bind to both CB1 and CB2 receptors and exert cannabimimetic effects similar to (-)-trans-Δ9-tetrahydrocannabinol, the main psychoactive component present in the cannabis plant. As CB1 receptor ligands were found to have severe adverse psychiatric effects, increased attention was turned to exploiting the potential therapeutic value of the CB2 receptor. In our efforts to discover novel and selective CB2 receptor agonists, 1 was selected as a starting point for hit molecule identification and a class of 1H-pyrazole-3-carboxamide derivatives were thus designed, synthesized, and biologically evaluated. Systematic structure-activity relationship investigations resulted in the identification of the most promising compound 66 as a selective CB2 receptor agonist with favorable pharmacokinetic profiles. Especially, 66 treatment significantly attenuated dermal inflammation and fibrosis in a bleomycin-induced mouse model of systemic sclerosis, supporting that CB2 receptor agonists might serve as potential therapeutics for treating systemic sclerosis.


Asunto(s)
Drogas de Diseño/química , Descubrimiento de Drogas , Receptor Cannabinoide CB2/agonistas , Esclerodermia Sistémica/tratamiento farmacológico , Drogas de Diseño/farmacocinética , Humanos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA