Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 7): 127433, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838113

RESUMEN

Lignin nanoparticles have gained increasing attention as a potential antimicrobial agent due to their biocompatibility, biodegradability, and low toxicity. However, the limited ability of lignin to act as an antibacterial is a major barrier to its widespread use. Thus, it is crucial to develop novel approaches to amplify lignin's biological capabilities in order to promote its effective utilization. In this study, we modified lignin nanoparticles (LNPs) with photo-active curcumin (Cur), zinc oxide (ZnO), or a combination of both to enhance their antimicrobial properties. The successful modifications of LNPs were confirmed using comprehensive characterization techniques. The antimicrobial efficacy of the modified LNPs was assessed against both gram-positive and gram-negative bacterial strains. The results showed that the modification of LNPs with Cur and ZnO have much higher antibacterial and antibiofilm activities than unmodified LNPs. Moreover, photo illumination resulted in even higher antibacterial activity. Furthermore, atomic force microscopy revealed bacterial cells lysis and membrane damage by ZnO/Cur modified LNPs. Our research demonstrates that ZnO/Cur modified LNPs can serve as novel hybrid materials with enhanced antimicrobial capabilities. In addition, the photo-induced enhancement in antibacterial activity not only demonstrated the versatility of this hybrid material but also opened up interesting potential for bioinspired therapeutics agents.


Asunto(s)
Antiinfecciosos , Curcumina , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Lignina/farmacología , Curcumina/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA