Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Gerontol A Biol Sci Med Sci ; 78(3): 373-383, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961318

RESUMEN

Aging is associated with metabolic decline in skeletal muscle, which can be delayed by physical activity. Moreover, both lifelong and short-term exercise training have been shown to prevent age-associated fragmentation of the mitochondrial network in mouse skeletal muscle. However, whether lifelong endurance exercise training exerts the same effects in human skeletal muscle is still not clear. Therefore, the aim of the present study was to examine the effect of volume-dependent lifelong endurance exercise training on mitochondrial function and network connectivity in older human skeletal muscle. Skeletal muscle complex I+II-linked mitochondrial respiration per tissue mass was higher, but intrinsic complex I+II-linked mitochondrial respiration was lower in highly trained older subjects than in young untrained, older untrained, and older moderately trained subjects. Mitochondrial volume and connectivity were higher in highly trained older subjects than in untrained and moderately trained older subjects. Furthermore, the protein content of the ADP/ATP exchangers ANT1 + 2 and VDAC was higher and of the mitophagic marker parkin lower in skeletal muscle from the highly trained older subjects than from untrained and moderately trained older subjects. In contrast, H2O2 emission in skeletal muscle was not affected by either age or exercise training, but SOD2 protein content was higher in highly trained older subjects than in untrained and moderately trained older subjects. This suggests that healthy aging does not induce oxidative stress or mitochondrial network fragmentation in human skeletal muscle, but high-volume exercise training increases mitochondrial volume and network connectivity, thereby increasing oxidative capacity in older human skeletal muscle.


Asunto(s)
Ejercicio Físico , Peróxido de Hidrógeno , Animales , Ratones , Humanos , Anciano , Peróxido de Hidrógeno/metabolismo , Ejercicio Físico/fisiología , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Resistencia Física/fisiología , Mitocondrias Musculares/metabolismo
2.
J Gerontol A Biol Sci Med Sci ; 77(6): 1101-1111, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875059

RESUMEN

Growing old is patently among the most prominent risk factors for lifestyle-related diseases and deterioration in physical performance. Aging in particular affects mitochondrial homeostasis, and maintaining a well-functioning mitochondrial pool is imperative in order to avoid age-associated metabolic decline. White adipose tissue (WAT) is a key organ in energy balance, and impaired mitochondrial function in adipocytes has been associated with increased low-grade inflammation, altered metabolism, excessive reactive oxygen species (ROS) production, and an accelerated aging phenotype. Exercise training improves mitochondrial health but whether lifelong exercise training can sufficiently maintain WAT mitochondrial function is currently unknown. Therefore, to dissect the role and dose-dependence of lifelong exercise training on aging WAT metabolic parameters and mitochondrial function, young and older untrained, as well as moderately and highly exercise trained older male subjects were recruited and abdominal subcutaneous (s)WAT biopsies and venous blood samples were obtained to measure mitochondrial function and key metabolic factors in WAT and plasma. Mitochondrial intrinsic respiratory capacity was lower in sWAT from older than from young subjects. In spite of this, maximal mitochondrial respiration per wet weight, markers of oxidative capacity, and mitophagic capacity were higher in sWAT from the lifelong highly exercise trained group than all other groups. Furthermore, ROS emission was generally lower in sWAT from lifelong highly exercise trained subjects than older untrained subjects. Taken together, aging reduces intrinsic mitochondrial respiration in human sWAT, but lifelong high-volume exercise training increases oxidative capacity by increasing mitochondrial volume likely contributing to healthy aging.


Asunto(s)
Envejecimiento Saludable , Tejido Adiposo Blanco/metabolismo , Ejercicio Físico , Humanos , Masculino , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...