RESUMEN
We aimed to investigate the association of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1) with acute ischemic stroke (AIS), and its association with disease severity, inflammation, and recurrence-free survival (RFS) in AIS patients. One hundred and twenty AIS patients and 120 controls were recruited. Venous blood samples from AIS patients (within 24 h after symptoms onset) and controls (at entry to study) were collected to detect plasma lnc-MALAT1 expression by real-time quantitative polymerase chain reaction. AIS severity was assessed by the National Institutes of Health Stroke Scale (NIHSS) score. Plasma concentrations of inflammation factors (including C-reactive protein (CRP), tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-8, IL-10, IL-17, and IL-22) were measured and RFS was calculated. lnc-MALAT1 expression was decreased in AIS patients compared to controls, and it had a close correlation with AIS (AUC=0.791, 95% CI: 0.735-0.846). For disease condition, lnc-MALAT1 expression negatively correlated with NIHSS score and pro-inflammatory factor expression (including CRP, TNF-α, IL-6, IL-8, and IL-22), while it positively correlated with anti-inflammatory factor IL-10 expression. Furthermore, lnc-MALAT1 expression was elevated in AIS patients with diabetes. For prognosis, no statistical correlation of lnc-MALAT1 expression with RFS was found, while a trend for longer RFS was observed in patients with lnc-MALAT1 high expression compared to those with lnc-MALAT1 low expression.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , ARN Largo no Codificante/genética , Accidente Cerebrovascular , Anciano , Isquemia Encefálica/diagnóstico , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/diagnósticoRESUMEN
We aimed to investigate the association of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1) with acute ischemic stroke (AIS), and its association with disease severity, inflammation, and recurrence-free survival (RFS) in AIS patients. One hundred and twenty AIS patients and 120 controls were recruited. Venous blood samples from AIS patients (within 24 h after symptoms onset) and controls (at entry to study) were collected to detect plasma lnc-MALAT1 expression by real-time quantitative polymerase chain reaction. AIS severity was assessed by the National Institutes of Health Stroke Scale (NIHSS) score. Plasma concentrations of inflammation factors (including C-reactive protein (CRP), tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-8, IL-10, IL-17, and IL-22) were measured and RFS was calculated. lnc-MALAT1 expression was decreased in AIS patients compared to controls, and it had a close correlation with AIS (AUC=0.791, 95% CI: 0.735-0.846). For disease condition, lnc-MALAT1 expression negatively correlated with NIHSS score and pro-inflammatory factor expression (including CRP, TNF-α, IL-6, IL-8, and IL-22), while it positively correlated with anti-inflammatory factor IL-10 expression. Furthermore, lnc-MALAT1 expression was elevated in AIS patients with diabetes. For prognosis, no statistical correlation of lnc-MALAT1 expression with RFS was found, while a trend for longer RFS was observed in patients with lnc-MALAT1 high expression compared to those with lnc-MALAT1 low expression.