Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1371568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606319

RESUMEN

The mammalian brain, especially the cerebral cortex, has evolved to increase in size and complexity. The proper development of the cerebral cortex requires the coordination of several events, such as differentiation and migration, that are essential for forming a precise six-layered structure. We have previously reported that Cdk5-mediated phosphorylation of JIP1 at T205 modulates axonal out-growth. However, the spatiotemporal expression patterns and functions of these three genes (Cdk5, Cdk5r1 or p35, and Mapk8ip1 or JIP1) in distinct cell types during cortical development remain unclear. In this study, we analyzed single-cell RNA-sequencing data of mouse embryonic cortex and discovered that Cdk5, p35, and JIP1 are dynamically expressed in intermediate progenitors (IPs). Pseudotime analysis revealed that the expression of these three genes was concomitantly upregulated in IPs during neuronal migration and differentiation. By manipulating the expression of JIP1 and phospho-mimetic JIP1 using in utero electroporation, we showed that phosphorylated JIP1 at T205 affected the temporal migration of neurons.

2.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429579

RESUMEN

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Asunto(s)
Epilepsia , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Obesidad , Humanos , Ratones , Animales , Discapacidad Intelectual/genética , Proteínas Represoras , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción
3.
BMC Biol ; 21(1): 240, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907898

RESUMEN

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Asunto(s)
Quinasas Ciclina-Dependientes , Drosophila melanogaster , Animales , Ratones , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo
4.
BMC Biol ; 20(1): 115, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581583

RESUMEN

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Asunto(s)
Neuronas , Transducción de Señal , Células Cultivadas , Neuronas/metabolismo , Fosforilación , Transducción de Señal/fisiología
5.
Aging (Albany NY) ; 13(1): 77-88, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33291077

RESUMEN

Pink1, Parkin and Fbxo7, three autosomal recessive familial genes of Parkinson's disease (PD), have been implicated in mitophagy pathways for quality control and clearance of damaged mitochondria, but the interplay of these three genes still remains unclear. Here we present that Fbxo7 and Pink1 play a reciprocal role in the regulation of their protein levels. Regardless of the genotypes of Fbxo7, the wild type and the PD familial mutants of Fbxo7 stabilize the processed form of Pink1, supporting the prior study that none of the PD familial mutations in Fbxo7 have an effect on the interaction with Pink1. On the other hand, the interaction of Fbxo7 with Bag2 further facilitates its capability to stabilize Pink1. Intriguingly, the stabilization of Fbxo7 by Pink1 is specifically observed in substantial nigra pars compacta but striatum and cerebral cortex. Taken together, our findings support the notion that Fbxo7 as a scaffold protein has a chaperon activity in the stabilization of proteins.


Asunto(s)
Encéfalo/metabolismo , Proteínas F-Box/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Proteínas F-Box/genética , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Chaperonas Moleculares/metabolismo , Mutación , Enfermedad de Parkinson/genética , Porción Compacta de la Sustancia Negra/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteolisis , Ubiquitinación
6.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30967472

RESUMEN

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F4/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Proteínas Represoras/biosíntesis , Accidente Cerebrovascular/metabolismo , Transactivadores/biosíntesis , Secuencias de Aminoácidos , Animales , Muerte Celular , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F4/genética , Ratones , Ratones Transgénicos , Neuronas/patología , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Transactivadores/genética
7.
J Neurochem ; 150(3): 312-329, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30734931

RESUMEN

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Enfermedad de Parkinson/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
8.
Cell Death Dis ; 10(2): 135, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755590

RESUMEN

The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Muerte Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteína Desglicasa DJ-1/metabolismo , Respuesta de Proteína Desplegada , Regulación hacia Arriba , Factor de Transcripción Activador 4/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Fibroblastos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Estrés Oxidativo/genética , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , ARN Mensajero/metabolismo
9.
Nat Commun ; 8(1): 1399, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123128

RESUMEN

Mutations in PTEN-induced kinase 1 (PINK1) result in a recessive familial form of Parkinson's disease (PD). PINK1 loss is associated with mitochondrial Ca2+ mishandling, mitochondrial dysfunction, as well as increased neuronal vulnerability. Here we demonstrate that PINK1 directly interacts with and phosphorylates LETM1 at Thr192 in vitro. Phosphorylated LETM1 or the phospho-mimetic LETM1-T192E increase calcium release in artificial liposomes and facilitates calcium transport in intact mitochondria. Expression of LETM1-T192E but not LETM1-wild type (WT) rescues mitochondrial calcium mishandling in PINK1-deficient neurons. Expression of both LETM1-WT and LETM1-T192E protects neurons against MPP+-MPTP-induced neuronal death in PINK1 WT neurons, whereas only LETM1-T192E protects neurons under conditions of PINK1 loss. Our findings delineate a mechanism by which PINK1 regulates mitochondrial Ca2+ level through LETM1 and suggest a model by which PINK1 loss leads to deficient phosphorylation of LETM1 and impaired mitochondrial Ca2+ transport..


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Animales , Células Cultivadas , Transporte Iónico/fisiología , Liposomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Fosforilación
10.
J Biol Chem ; 290(51): 30441-52, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26538564

RESUMEN

Emerging evidence has demonstrated a growing genetic component in Parkinson disease (PD). For instance, loss-of-function mutations in PINK1 or PARKIN can cause autosomal recessive PD. Recently, PINK1 and PARKIN have been implicated in the same signaling pathway to regulate mitochondrial clearance through recruitment of PARKIN by stabilization of PINK1 on the outer membrane of depolarized mitochondria. The precise mechanisms that govern this process remain enigmatic. In this study, we identify Bcl2-associated athanogene 2 (BAG2) as a factor that promotes mitophagy. BAG2 inhibits PINK1 degradation by blocking the ubiquitination pathway. Stabilization of PINK1 by BAG2 triggers PARKIN-mediated mitophagy and protects neurons against 1-methyl-4-phenylpyridinium-induced oxidative stress in an in vitro cell model of PD. Collectively, our findings support the notion that BAG2 is an upstream regulator of the PINK1/PARKIN signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Supervivencia Celular , Ratones , Ratones Mutantes , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Mitofagia/genética , Chaperonas Moleculares/genética , Proteínas Quinasas/genética , Estabilidad Proteica , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
11.
PLoS One ; 9(9): e106601, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25210784

RESUMEN

Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2.


Asunto(s)
Antioxidantes/metabolismo , Arildialquilfosfatasa/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Proteínas Oncogénicas/biosíntesis , Enfermedad de Parkinson/genética , Animales , Apoptosis/genética , Arildialquilfosfatasa/genética , Supervivencia Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas Oncogénicas/genética , Estrés Oxidativo , Enfermedad de Parkinson/patología , Proteína Desglicasa DJ-1
12.
J Neurosci ; 34(23): 8043-50, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24899725

RESUMEN

DJ-1 (PARK7) is a gene linked to autosomal recessive Parkinson disease (PD). We showed previously that DJ-1 loss sensitizes neurons in models of PD and stroke. However, the biochemical mechanisms underlying this protective role are not completely clear. Here, we identify Von Hippel Lindau (VHL) protein as a critical DJ-1-interacting protein. We provide evidence that DJ-1 negatively regulates VHL ubiquitination activity of the α-subunit of hypoxia-inducible factor-1 (HIF-1α) by inhibiting HIF-VHL interaction. Consistent with this observation, DJ-1 deficiency leads to lowered HIF-1α levels in models of both hypoxia and oxidative stress, two stresses known to stabilize HIF-1α. We also demonstrate that HIF-1α accumulation rescues DJ-1-deficient neurons against 1-methyl-4-phenylpyridinium-induced toxicity. Interestingly, lymphoblast cells extracted from DJ-1-related PD patients show impaired HIF-1α stabilization when compared with normal individuals, indicating that the DJ-1-VHL link may also be relevant to a human context. Together, our findings delineate a model by which DJ-1 mediates neuronal survival by regulation of the VHL-HIF-1α pathway.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Noqueados , Neuroblastoma/patología , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Proteínas Oncogénicas/deficiencia , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Enfermedad de Parkinson/patología , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
13.
Proc Natl Acad Sci U S A ; 109(39): 15918-23, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019375

RESUMEN

DJ-1 mutations cause autosomal recessive early-onset Parkinson disease (PD). We report a model of PD pathology: the DJ1-C57 mouse. A subset of DJ-1-nullizygous mice, when fully backcrossed to a C57BL/6 [corrected] background, display dramatic early-onset unilateral loss of dopaminergic (DA) neurons in their substantia nigra pars compacta, progressing to bilateral degeneration of the nigrostriatal axis with aging. In addition, these mice exhibit age-dependent bilateral degeneration at the locus ceruleus nucleus and display mild motor behavior deficits at aged time points. These findings effectively recapitulate the early stages of PD. Therefore, the DJ1-C57 mouse provides a tool to study the preclinical aspects of neurodegeneration. Importantly, by exome sequencing, we identify candidate modifying genes that segregate with the phenotype, providing potentially critical clues into how certain genes may influence the penetrance of DJ-1-related degeneration in mice.


Asunto(s)
Neuronas Dopaminérgicas/patología , Péptidos y Proteínas de Señalización Intracelular , Locus Coeruleus/patología , Proteínas del Tejido Nervioso , Proteínas Oncogénicas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Humanos , Locus Coeruleus/metabolismo , Ratones , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo
15.
Nat Cell Biol ; 12(6): 563-71, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473298

RESUMEN

Accumulating evidence suggests that deregulated cyclin-dependent kinase 5 (Cdk5) plays a critical part in neuronal death. However, the pathogenic targets of Cdk5 are not fully defined. Here we demonstrate that the Cdk5 activator p35 interacts directly with apurinic/apyrimidinic endonuclease 1 (Ape1), a protein crucial for base excision repair (BER) following DNA damage. Cdk5 complexes phosphorylate Ape1 at Thr 232 and thereby reduces its apurinic/apyrimidinic (AP) endonuclease activity. Ape1 phosphorylation is dependent on Cdk5 in in vitro and in vivo. The reduced endonuclease activity of phosphorylated Ape1 results in accumulation of DNA damage and contributes to neuronal death. Overexpression of Ape1(WT) and Ape1(T232A), but not the phosphorylation mimic Ape1(T232E), protects neurons against MPP(+)/MPTP. Loss of Ape1 sensitizes neurons to death. Importantly, increased phosphorylated Ape1 was also observed in post-mortem brain tissue from patients with Parkinson's and Alzheimer's diseases, suggesting a potential link between Ape1 phosphorylation and the pathogenesis of neurodegenerative diseases.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Neuronas/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Fosforilación
16.
PLoS Genet ; 6(4): e1000914, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421934

RESUMEN

LRRK2 plays an important role in Parkinson's disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons. In contrast, the deletion of the WD40 domain of zLRRK2 by morpholinos targeting splicing did not induce severe embryonic developmental defects; rather it caused Parkinsonism-like phenotypes, including loss of dopaminergic neurons in diencephalon and locomotion defects. These neurodegenerative and locomotion defects could be rescued by over-expressing zLRRK2 or hLRRK2 mRNA. The administration of L-dopa could also rescue the locomotion defects, but not the neurodegeneration. Taken together, our results demonstrate that zLRRK2 is an ortholog of hLRRK2 and that the deletion of WD40 domain of zLRRK2 provides a disease model for PD.


Asunto(s)
Neuronas/metabolismo , Trastornos Parkinsonianos/genética , Proteínas Serina-Treonina Quinasas/genética , Eliminación de Secuencia , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Embrión no Mamífero/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mutación , Degeneración Nerviosa/genética , Trastornos Parkinsonianos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Pez Cebra/metabolismo
17.
J Neurochem ; 112(2): 497-510, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19895669

RESUMEN

DNA damage is a critical component of neuronal death underlying neurodegenerative diseases and injury. Neuronal death evoked by DNA damage is characterized by inappropriate activation of multiple cell cycle components. However, the mechanism regulating this activation is not fully understood. We demonstrated previously that the cell division cycle (Cdc) 25A phosphatase mediates the activation of cyclin-dependent kinases and neuronal death evoked by the DNA damaging agent camptothecin. We also showed that Cdc25A activation is blocked by constitutive checkpoint kinase 1 activity under basal conditions in neurons. Presently, we report that an additional factor is central to regulation of Cdc25A phosphatase in neuronal death. In a gene array screen, we first identified Pim-1 as a potential factor up-regulated following DNA damage. We confirmed the up-regulation of Pim-1 transcript, protein and kinase activity following DNA damage. This induction of Pim-1 is regulated by the nuclear factor kappa beta (NF-kappaB) pathway as Pim-1 expression and activity are significantly blocked by siRNA-mediated knockdown of NF-kappaB or NF-kappaB pharmacological inhibitors. Importantly, Pim-1 activity is critical for neuronal death in this paradigm and its deficiency blocks camptothecin-mediated neuronal death. It does so by activating Cdc25A with consequent activation of cyclin D1-associated kinases. Taken together, our results demonstrate that Pim-1 kinase plays a central role in DNA damage-evoked neuronal death by regulating aberrant neuronal cell cycle activation.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN/fisiología , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Transformada , Corteza Cerebral/citología , Inmunoprecipitación de Cromatina/métodos , Daño del ADN/efectos de los fármacos , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-pim-1/deficiencia , Proteínas Proto-Oncogénicas c-pim-1/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , Estaurosporina/farmacología , Isótopos de Azufre/metabolismo , Factores de Tiempo , Transfección/métodos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Fosfatasas cdc25/metabolismo
18.
J Neurosci ; 29(40): 12497-505, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19812325

RESUMEN

Recent evidence suggests that abnormal activation of cyclin-dependent kinase 5 (cdk5) is a critical prodeath signal in stroke. However, the mechanism(s) by which cdk5 promotes death is unclear. Complicating the role of cdk5 are the observations that cdk5 can exist in multiple cellular regions and possess both prosurvival and prodeath characteristics. In particular, the critical role of cytoplasmic or nuclear cdk5 in neuronal jury, in vivo, is unclear. Therefore, we determined where cdk5 was activated in models of ischemia and how manipulation of cdk5 in differing compartments may affect neuronal death. Here, we show a critical function for cytoplasmic cdk5 in both focal and global models of stroke, in vivo. Cdk5 is activated in the cytoplasm and expression of DNcdk5 localized to the cytoplasm is protective. Importantly, we also demonstrate the antioxidant enzyme Prx2 (peroxiredoxin 2) as a critical cytoplasmic target of cdk5. In contrast, the role of cdk5 in the nucleus is context-dependent. Following focal ischemia, nuclear cdk5 is activated and functionally relevant while there is no evidence for such activation following global ischemia. Importantly, myocyte enhancer factor 2D (MEF2D), a previously described nuclear target of cdk5 in vitro, is also phosphorylated by cdk5 following focal ischemia. In addition, MEF2D expression in this paradigm ameliorates death. Together, our results address the critical issue of cdk5 activity compartmentalization, as well as define critical substrates for both cytoplasmic and nuclear cdk5 activity in adult models of stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citoplasma/metabolismo , Peroxirredoxinas/metabolismo , Animales , Isquemia Encefálica/etiología , Muerte Celular/fisiología , Células Cultivadas , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Ratas , Ratas Wistar , Accidente Cerebrovascular/complicaciones
19.
Hugo J ; 3(1-4): 31-40, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21119756

RESUMEN

UNLABELLED: Multiple lines of evidence suggest regulatory variation to play an important role in phenotypic evolution and disease development, but few regulatory polymorphisms have been characterized genetically and molecularly. Recent technological advances have made it possible to identify bona fide regulatory sequences experimentally on a genome-wide scale and opened the window for the biological interrogation of germ-line polymorphisms within these sequences. In this study, through a forward genetic analysis of bona fide p53 binding sites identified by a genome-wide chromatin immunoprecipitation and sequence analysis, we discovered a SNP (rs1860746) within the motif sequence of a p53 binding site where p53 can function as a regulator of transcription. We found that the minor allele (T) binds p53 poorly and has low transcriptional regulation activity as compared to the major allele (G). Significantly, the homozygosity of the minor allele was found to be associated with an increased risk of ER negative breast cancer (OR = 1.47, P = 0.038) from the analysis of five independent breast cancer samples of European origin consisting of 6,127 breast cancer patients and 5,197 controls. rs1860746 resides in the third intron of the PRKAG2 gene that encodes the γ subunit of the AMPK protein, a major sensor of metabolic stress and a modulator of p53 action. However, this gene does not appear to be regulated by p53 in lymphoblastoid cell lines nor in a cancer cell line. These results suggest that either the rs1860746 locus regulates another gene through distant interactions, or that this locus is in linkage disequilibrium with a second causal mutation. This study shows the feasibility of using genomic scale molecular data to uncover disease associated SNPs, but underscores the complexity of determining the function of regulatory variants in human populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11568-010-9138-x) contains supplementary material, which is available to authorized users.

20.
J Neurochem ; 103(1): 408-22, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17608644

RESUMEN

SET is a multi-functional protein in proliferating cells. Some of the proposed functions of SET suggest an important nuclear role. However, the nuclear import pathway of SET is also unknown and the function of SET in neurons is unclear. Presently, using cortical neurons, we report that the nuclear import of SET is mediated by an impalpha/impbeta-dependent pathway. Nuclear localization signal, (168)KRSSQTQNKASRKR(181), in SET interacts with impalpha3, which recruits impbeta to form a ternary complex, resulting in efficient transportation of SET into nucleus. By in vitro nuclear import assay based on digitonin-permeabilized neurons, we further demonstrated that the nuclear import of SET relies on Ran GTPase. We provide evidence that this nuclear localization of SET is important in neuronal survival. Under basal conditions, SET is predominately nuclear. However, upon death induced by genotoxic stress, endogenous SET decreases in the nucleus and increases in the cytoplasm. Consistent with a toxic role of SET in the cytoplasm, targeted expression of SET to the cytoplasm exacerbates death compared to wild type SET expression which is protective following DNA damage. Taken together, our results indicate that SET is imported into the nucleus through its association with impalpha3/impbeta, and that localization of SET is important in regulation of neuronal death.


Asunto(s)
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Encéfalo/citología , Muerte Celular/fisiología , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/toxicidad , Citosol/metabolismo , Proteínas de Unión al ADN , Técnicas de Transferencia de Gen , Chaperonas de Histonas , Humanos , Ratones , Neuronas/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...