Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2947, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580680

RESUMEN

Intrinsic polymer room-temperature phosphorescence (IPRTP) materials have attracted considerable attention for application in flexible electronics, information encryption, lighting displays, and other fields due to their excellent processabilities and luminescence properties. However, achieving multicolor long-lived luminescence, particularly white afterglow, in undoped polymers is challenging. Herein, we propose a strategy of covalently coupling different conjugated chromophores with poly(acrylic acid (AA)-AA-N-succinimide ester) (PAA-NHS) by a simple and rapid one-pot reaction to obtain pure polymers with long-lived RTPs of various colors. Among these polymers, the highest phosphorescence quantum yield of PAPHE reaches 14.7%. Furthermore, the afterglow colors of polymers can be modulated from blue to red by introducing three chromophores into them. Importantly, the acquired polymer TPAP-514 exhibits a white afterglow at room temperature with the chromaticity coordinates (0.33, 0.33) when the ratio of chromophores reaches a suitable value owing to the three-primary-color mechanism. Systematic studies prove that the emission comes from the superposition of different triplet excited states of the three components. Moreover, the potential applications of the obtained polymers in light-emitting diodes and dynamic anti-counterfeiting are explored. The proposed strategy provides a new idea for constructing intrinsic polymers with diverse white-light emission RTPs.

2.
Adv Sci (Weinh) ; 11(11): e2306942, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38161216

RESUMEN

Long-persistent luminescent (LPL) materials have attracted considerable research interest due to their extensive applications and outstanding afterglow performance. However, the performance of red LPL materials lags behind that of green and blue materials. Therefore, it is crucial to explore novel red LPL materials. This study introduces a straightforward and viable strategy for organic-inorganic hybrids, wherein the organic ligand 1,3,6,8-Tetrakis(4-carboxyphenyl)pyrene (TCPP) is coordinated to the surface of a red persistent phosphor Sr0.75 Ca0.25 S:Eu2+ (R) through a one-step method. TCPP serves as an antenna, facilitating the transfer of absorbed light energy to R via triplet energy transfer (TET). Notably, the initial afterglow intensity and luminance of R increase by twofold and onefold, respectively, and the afterglow duration extends from 9 to 17 min. Furthermore, this study involves the preparation of a highly flexible film by mixing R@TCPP with high-density polyethylene (HDPE) to create a sound-controlled afterglow lamp. This innovative approach holds promising application prospects in flexible large-area luminescence, flexible wearables, and low-vision lighting.

3.
Small ; : e2309081, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050934

RESUMEN

Recently, embedding organic phosphors into the polyvinyl alcohol (PVA) matrix has emerged as a convenient strategy to obtain efficient long-lived room temperature phosphorescence (RTP) via forming strong intermolecular hydrogen bonds with organic phosphors to minimize nonradiative relaxations. Regrettably, it is discovered that PVA is unable to trigger RTP emission when a novel functional phosphor THBE containing six extended biphenyl formaldehyde arms is doped into PVA matrix. Surprisingly, the excellent long-lived RTP emission can be easily obtained by doping THBE into PVA analogs, poly(vinyl alcohol-co-ethylene) (PVA-co-PE). The unique visualization growth process (i.e., white streak generation) of long-lived RTP is observed by UV light-driven aggregation of functional molecules THBE in PVA-co-PE matrix. The phosphorescent intensity of the luminescent film is enhanced by 55 times, from 729 to 40,785 a.u., and its phosphorescence lifetime is increased by 38 times, from 37.08 to 1415.41 ms. Due to the dynamically reversible RTP performance, as well as the permeability, flexibility, and wrinkle-free properties of the luminescent film, it can be utilized to create cutting-edge information storage devices.

4.
Nat Commun ; 14(1): 7252, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945554

RESUMEN

Polymeric materials exhibiting room temperature phosphorescence (RTP) show a promising application potential. However, the conventional ways of preparing such materials are mainly focused on doping, which may suffer from phase separation, poor compatibility, and lack of effective methods to promote intersystem crossing and suppress the nonradiative deactivation rates. Herein, we present an intrinsically polymeric RTP system producing long-lived phosphorescence, high quantum yields and multiple colors by stepwise structural confinement to tame triplet excitons. In this strategy, the performance of the materials is improved in two aspects simultaneously: the phosphorescence lifetime of one polymer (9VA-B) increased more than 4 orders of magnitude, and the maximum phosphorescence quantum yield reached 16.04% in halogen-free polymers. Moreover, crack detection is realized by penetrating steam through the materials exposed to humid surroundings as a special quenching effect, and the information storage is carried out by employing the Morse code and the variations in lifetimes. This study provides a different strategy for constructing intrinsically polymeric RTP materials toward targeted applications.

5.
Small ; 19(31): e2206429, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36609989

RESUMEN

As a type of room temperature phosphorescence (RTP) material, carbon dots (CDs) always show short lifetime and low phosphorescence efficiency. To counter these disadvantages, several strategies, such as embedding in rigid matrix, introducing of heteroatom, crosslink-enhanced emission, etc., are well developed. Consequently, lots of CDs-based RTP materials are obtained. Doping of CDs into various matrix is the dominant method for preparation of long-lived CDs-based RTP materials so far. The desired CDs@matrix composites always display outstanding RTP performances. Meanwhile, matrix-free CDs and carbonized polymer dots-based RTP materials are also widely developed. Amounts of CDs possessing ultra-long lived, multiple colored, and dynamic RTP emission are successfully obtained. Herein, the recent progress achieved in CDs-based RTP materials as well as the corresponding efficient strategies and emission mechanisms are summarized and reviewed in detail. Due to CDs-based RTP materials possess excellent chemical stability, photostability and low biological toxicity, they exhibit great application potential in the fields of anti-counterfeiting, data encryption, and biological monitoring. The application of the CDs-based RTP materials is also introduced in this review. As a promising functional material, development of long wavelength RTP emitting CDs with long lifetime is still challengeable, especially for the red and near-infrared emitting RTP materials.

6.
Adv Mater ; 34(34): e2204415, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35731029

RESUMEN

Room-temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti-counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long-lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long-lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright-green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water.

7.
J Am Chem Soc ; 144(13): 6107-6117, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316063

RESUMEN

Long-lived organic room-temperature phosphorescence (RTP) has sparked intense explorations, owing to the outstanding optical performance and exceptional applications. Because triplet excitons in organic RTP experience multifarious relaxation processes resulting from their high sensitivity, spin multiplicity, inevitable nonradiative decay, and external quenchers, boosting RTP performance by the modulated triplet-exciton behavior is challenging. Herein, we report that cross-linked polyphosphazene nanospheres can effectively promote long-lived organic RTP. Through molecular engineering, multiple carbonyl groups (C═O), heteroatoms (N and P), and heavy atoms (Cl) are introduced into the polyphosphazene nanospheres, largely strengthening the spin-orbit coupling constant by recalibrating the electronic configurations between singlet (Sn) and triplet (Tn) excitons. In order to further suppress nonradiative decay and avoid quenching under ambient conditions, polyphosphazene nanospheres are encapsulated with poly(vinyl alcohol) matrix, thus synchronously prompting phosphorescence lifetime (173 ms longer), phosphorescence efficiency (∼12-fold higher), afterglow duration time (more than 20 s), and afterglow absolute luminance (∼19-fold higher) as compared with the 2,3,6,7,10,11-hexahydroxytriphenylene precursor. By measuring the emission intensity of the phosphorescence, an effective probe based on the nanospheres is developed for visible, quantitative, and expeditious detection of volatile organic compounds. More significantly, the obtained films show high selectivity and robustness for anisole detection (7.1 × 10-4 mol L-1). This work not only demonstrates a way toward boosting the efficiency of RTP materials but also provides a new avenue to apply RTP materials in feasible detection applications.

8.
ACS Appl Mater Interfaces ; 14(13): 15706-15715, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319186

RESUMEN

Long-lived room temperature phosphorescence (RTP) materials are promising for applications in various fields including security information, medical diagnostics, and molecular imaging because of their unique optical properties. Previous RTP materials are mainly excited by ultraviolet light, while synthesizing long-lived RTP materials with visible-light-excitation remains a challenge. In particular, long-lived RTP materials that can be excited by green light are rare. Herein, a feasible and concise chemical strategy for constructing hydrogen-bonded frameworks in an aqueous environment is developed to fabricate large-size, green-light-excited, and excitation-dependent long-lived RTP carbon dot crystals (m,p/CDs-ME). The RTP performance of the crystals exhibits strong excitation wavelength dependence, leading to a full range of visible-light tuning from blue to red. Importantly, the maximum excitation wavelength of the RTP crystals is around 500 nm, thus successfully realizing green light excitation. m,p/CDs-ME presents long-lived phosphorescence (130 ms) under 500 nm excitation in aqueous solution, making it highly suitable for dopamine detection. This work not only provides a general guideline for the development of large size long-lived RTP crystals but also extends the operation scope of long-lived RTP materials in the detection of biomarkers by visible light excitation.

9.
Nat Commun ; 12(1): 2297, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863899

RESUMEN

Room temperature phosphorescence (RTP) has drawn extensive attention in recent years. Efficient stimulus-responsive phosphorescent organic materials are attractive, but are extremely rare because of unclear design principles and intrinsically spin-forbidden intersystem crossing. Herein, we present a feasible and facile strategy to achieve ultraviolet irradiation-responsive ultralong RTP (IRRTP) of some simple organic phosphors by doping into amorphous poly(vinyl alcohol) matrix. In addition to the observed green and yellow afterglow emission with distinct irradiation-enhanced phosphorescence, the phosphorescence lifetime can be tuned by varying the irradiation period of 254 nm light. Significantly, the dynamic phosphorescence lifetime could be increased 14.3 folds from 58.03 ms to 828.81 ms in one of the obtained hybrid films after irradiation for 45 min under ambient conditions. As such, the application in polychromatic screen printing and multilevel information encryption is demonstrated. The extraordinary IRRTP in the amorphous state endows these systems with a highly promising potential for smart flexible luminescent materials and sensors with dynamically controlled phosphorescence.

10.
Research (Wash D C) ; 2021: 8096263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681812

RESUMEN

Developing novel long-lived room-temperature polymer phosphorescence (RTPP) materials could significantly expand their application scope. Herein, a series of RTPP materials based on eight simple vanilla derivatives for security ink application are reported. Attributed to strong mutual hydrogen bonding with polyvinyl alcohol (PVA) matrix, vanilla-doped PVA films exhibit ultralong phosphorescence emission under ambient conditions observed by naked eyes, where methyl vanillate shows the longest emission time up to 7 s. Impressively, when vanilla-doped PVA materials are utilized as invisible security inks, and the inks not only present excellent luminescent emission stability under ambient conditions but also maintain perfect reversibility between room temperature and 65°C for multiple cycles. Owing to the unique RTPP performance, an advanced anticounterfeiting data encoding/reading strategy based on handwriting technology and complex pattern steganography is developed.

11.
Adv Mater ; 32(7): e1907355, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31930607

RESUMEN

Organic long-persistent luminescence (OLPL) materials have attracted wide attention on account of their fascinating luminescence properties, presenting application prospects in the fields of bioimaging, information security, displays, anti-counterfeiting, and so on. Some effective strategies have been developed to promote the intersystem crossing (ISC) of the excited singlet state to triplet state and limit nonradiative transition, and thus OLPL materials with long lifetime (more than 1s) and high quantum yield have been explored. However, OLPL materials with dynamic and excitation-dependent characteristics are rarely reported. In this work, two novel polyphosphazene derivatives containing carbazolyl units are designed and synthesized successfully, and then they are doped into poly(vinyl alcohol) (PVA) films to achieve polymeric long-persistent luminescence (PLPL). Unexpectedly, excitation-dependent PLPL (ED-PLPL) is obtained under ambient conditions (in air at room temperature), and the persistent luminescence color can be changed from blue to green upon varying the excitation wavelength. At the same time, a dynamic cycle of ED-PLPL is realized based on the formation and destruction of hydrogen bonding interactions between the PVA chains and polyphosphazene phosphor. This work provides a new strategy for the design of color-tunable polymeric luminescent materials under ambient conditions.

12.
Nat Commun ; 10(1): 3074, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300644

RESUMEN

Flexible hydrogen-bonded organic frameworks (FHOFs) are quite rare but promising for applications in separation, sensing and host-guest chemistry. They are difficult to stabilize, making their constructions a major challenge. Here, a flexible HOF (named 8PN) with permanent porosity has been successfully constructed. Nine single crystals of 8PN with different pore structures are obtained, achieving a large-scale void regulation from 4.4% to 33.2% of total cell volume. In response to external stimuli, multimode reversible structural transformations of 8PN accompanied by changes in luminescence properties have been realized. Furthermore, a series of high-quality co-crystals containing guests of varying shapes, sizes, aggregation states and even amounts are obtained, showing that 8PN can adapt to different guests by regulating the molecular conformations and assembling forms of its building blocks. The unexpected flexibility of 8PN makes it a promising material for enriching the applications of existing porous materials.

13.
ACS Appl Mater Interfaces ; 10(14): 11430-11435, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29600701

RESUMEN

We report a flexible multifunctional aromatic polyimide (BTDBPI) that shows yellow-green fluorescence with high photoluminescence quantum yield (PLQY) of 30% in the film state. The nonvolatile "write once-read many" (WORM) characteristic in a memory device with the configuration of ITO/BTDBPI/Au indicates that BTDBPI possesses organic semiconductor behavior. Moreover, polymer light-emitting diodes (PLEDs) with the structure of ITO/PEDOT:PSS/BTDBPI/TPBI/Mg-Ag exhibits an interesting dual-emission phenomenon that originates from the electroluminescence (EL) of the BTDBPI nanometer film (yellow-green, 525 nm) and TPBI (deep blue, 380 nm), demonstrating that BTDBPI shows both the charge-transporting and EL properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...