Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37368243

RESUMEN

Elastic strain sensor nanocomposites are emerging materials of high scientific and commercial interest. This study analyzes the major factors influencing the electrical behavior of elastic strain sensor nanocomposites. The sensor mechanisms were described for nanocomposites with conductive nanofillers, either dispersed inside the polymer matrix or coated onto the polymer surface. The purely geometrical contributions to the change in resistance were also assessed. The theoretical predictions indicated that maximum Gauge values are achieved for mixture composites with filler fractions slightly above the electrical percolation threshold, especially for nanocomposites with a very rapid conductivity increase around the threshold. PDMS/CB and PDMS/CNT mixture nanocomposites with 0-5.5 vol.% fillers were therefore manufactured and analyzed with resistivity measurements. In agreement with the predictions, the PDMS/CB with 2.0 vol.% CB gave very high Gauge values of around 20,000. The findings in this study will thus facilitate the development of highly optimized conductive polymer composites for strain sensor applications.

2.
ACS Appl Mater Interfaces ; 12(37): 42140-42152, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32816448

RESUMEN

A flexible, biocompatible, nitrile butadiene rubber (NBR)-based strain sensor with high stretchability, good sensitivity, and excellent repeatability is presented for the first time. Carbon black (CB) particles were embedded into an NBR matrix via a dissolving-coating technique, and the obtained NBR/CB composite was coated with polydopamine (PDA) to preserve the CB layer. The mechanical properties of the NBR films were found to be significantly improved with the addition of CB and PDA, and the produced composite films were noncytotoxic and highly biocompatible. Strain-sensing tests showed that the uncoated CB/NBR films possess a high sensing range (strain of ∼550%) and good sensitivity (gauge factor of 52.2), whereas the PDA/NBR/CB films show a somewhat reduced sensing range (strain of ∼180%) but significantly improved sensitivity (gauge factor of 346). The hysteresis curves obtained from cyclic strain-sensing tests demonstrate the prominent robustness of the sensor material. Three novel equations were developed to accurately describe the uniaxial and cyclic strain-sensing behavior observed for the investigated strain sensors. Gloves and knee/elbow covers were produced from the films, revealing that the signals generated by different finger, elbow, and knee movements are easily distinguishable, thus confirming that the PDA/NBR/CB composite films can be used in a wide range of wearable strain sensor applications.


Asunto(s)
Indoles/química , Nanocompuestos/química , Nitrilos/química , Polímeros/química , Goma/química , Hollín/química , Dispositivos Electrónicos Vestibles , Animales , Células Cultivadas , Materiales Biocompatibles Revestidos , Ratones , Células 3T3 NIH , Tamaño de la Partícula , Propiedades de Superficie
3.
Macromol Biosci ; 20(10): e2000138, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33405347

RESUMEN

The effect of the incorporation of 45S5 bioactive glass (BG) microparticles (mean particle size ≈ 2 µm) on the fabrication and physicochemical properties of alginate dialdehyde-gelatin hydrogel capsules is investigated. The addition of BG particles decreases the hydrogel gelation time by ≈79% and 91% for the samples containing 0.1% w/v and 0.5% w/v BG, respectively. Moreover, it results in increasing average diameter of hydrogel capsules produced via a pressure-driven extrusion technique from about 1000 µm for the samples without BG to about 1700 and 1900 µm for the samples containing BG at concentrations of 0.1% w/v and 0.5% w/v, respectively. The presence of BG particles in the capsules decreases the degradation rate and improves the bioactivity of the materials. The viability of MG-63 cells encapsulated in all samples increases during the first 7 d of cultivation and maintains the same level during 21 d of cultivation. The early cell viability in samples containing BG is lower than that in samples without BG. The results show that 45S5 BG can positively regulate the osteogenic activity of cells incorporated in hydrogel capsules. The fabricated composite capsules exhibit promising potential for cell delivery in bone regeneration applications.


Asunto(s)
Aldehídos/química , Alginatos/química , Células/metabolismo , Cerámica/química , Gelatina/química , Vidrio/química , Fosfatasa Alcalina/metabolismo , Cápsulas , Línea Celular Tumoral , Supervivencia Celular , Células Inmovilizadas/citología , Fenómenos Químicos , Humanos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
4.
RSC Adv ; 10(7): 4156-4165, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35492652

RESUMEN

In order to study the electrical conductivity of anisotropic PMMA/carbon fiber (CF) composites, cylindrical PMMA/CF filaments were extruded through a capillary rheometer, resulting in an induced CF orientation along the extrusion direction. The aspect ratios of the CFs in the filaments were accurately regulated using a two-step melt mixing process. By measuring the vertical and horizontal resistances of filaments where the outermost layer was successively peeled off, the anisotropic conductivities could be calculated. This was done using a novel analytical model where each cylindrical composite filament was defined as a structure consisting of three concentric cylinders with potentially different conductivities and CF orientations. The electrical conductivity increased with the degree of fiber orientation along the voltage direction and the effects of anisotropy and measurement direction were incorporated into the (isotropic) McLachlan equation. The required distance for electrical contact between the CFs was calculated to be 16 nm. Finite element (FEM) simulations were successfully utilized to confirm the data.

5.
Nanotechnology ; 30(24): 245703, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30822767

RESUMEN

Anisotropic ternary composites comprising poly(methy-methacrylate) (PMMA), carbon black (CB), and carbon nanotubes (CNTs) were extruded using a capillary rheometer and the electrical conductivities of the composites were measured and presented in a detailed contour plot covering a large range of filler fractions (up to 30 vol% CNTs, 20 vol% CB). A recent generic conductivity model for ternary composites was successfully validated using the conductivity measurements. When analyzing the conductivity measurements using four traditional definitions of 'synergy' between two conductive fillers, no clear synergetic effect was observed between CB and CNT. Also, when all the conductivity data for ternary CNT/CB composites from the existing literature was carefully gathered and analyzed, the number of confirmed occurrences of strong and convincing CNT/CB synergies was surprisingly low. Finally, a novel definition of synergy based on the physical aspect, in particular, its maximum, the 'synergasm', was defined in order to obtain a more precise instrument for revealing regions of potential synergy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA