Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891290

RESUMEN

Numerous studies have shown that the endophytic fungus Piriformospora indica has a broad range of promoting effects on root development and plant growth in host plants. However, there are currently no reports on the application of this fungus on Cerasus humilis. This study first compared the colonization ability of P. indica on 11 C. humilis varieties and found that the colonization rate of this fungus on these varieties ranged from 90% to 100%, with the colonization rate of the varieties '09-01' and 'Nongda 7' being as high as 100%. Subsequently, the effect of P. indica on root development and plant growth of C. humilis was investigated using cuttings of '09-01' and 'Nongda 7' as materials. P. indica colonization was found to increase the biomass of '09-01' and 'Nongda 7' plants; root activity, POD enzymes, and chlorophyll content were also significantly increased. In addition, indole-3-acetic acid (IAA) content in the roots of C. humilis plants increased after colonization, while jasmonic acid (JA) and 1-aminocyclopropane-1-car- boxylic acid (ACC) content decreased. In conclusion, it has been demonstrated that P. indica can promote the growth of C. humilis plants by accelerating biomass accumulation, promoting rooting, and enhancing the production of photosynthetic pigments, as well as regulating hormone synthesis.

2.
Molecules ; 28(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687101

RESUMEN

Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the contents of bioactive substances (chlorophyll, carotenoids, ascorbic acid, anthocyanin, total flavonoids, and total phenols), antioxidant capacities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS+) scavenging ability, and ferric-reducing antioxidant power (FRAP)) in differentially pigmented C. humilis fruits of four varieties were determined and compared. The results revealed that anthocyanin, total flavonoids and total phenols were the three main components responsible for the antioxidant activity of C. humilis fruits. 'Jinou No.1' fruits with dark red peel and red flesh had the highest contents of anthocyanin, total flavonoids, and total phenols, as well as the highest antioxidant capacities; 'Nongda No.5' fruits with yellow-green peel and yellow flesh had the highest contents of carotenoids and chlorophyll, while 'Nongda No.6' fruit had the highest ascorbic acid content. To further reveal the molecular mechanism underlying differences in the accumulation of carotenoids and flavonoids among differentially pigmented C. humilis fruits, the expression patterns of structural genes involved in the biosynthesis of the two compounds were investigated. Correlation analysis results revealed that the content of carotenoids in C. humilis fruits was very significantly positively correlated with the expression of the ChCHYB, ChZEP, ChVDE, ChNSY, ChCCD1, ChCCD4, ChNCED1, and ChNCED5 genes (p < 0.01) and significantly negatively correlated with the expression of ChZDS (p < 0.05). The anthocyanin content was very significantly positively correlated with ChCHS, ChFLS, and ChUFGT expression (p < 0.01). The total flavonoid content was very significantly positively correlated with the expression of ChCHS, ChUFGT, and ChC4H (p < 0.01) and significantly positively correlated with ChFLS expression (p < 0.05). This study can provide a basis for understanding the differences in the accumulation of bioactive substances, and is helpful for clarifying the mechanisms underlying the accumulation of various carotenoids and flavonoids among differentially pigmented C. humilis fruits.


Asunto(s)
Antioxidantes , Prunus , Antioxidantes/farmacología , Frutas , Antocianinas , Carotenoides , Ácido Ascórbico , Flavonoides , Clorofila , Fenoles
3.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762185

RESUMEN

Chalcone synthase (CHS) is the first key enzyme-catalyzing plant flavonoid biosynthesis. Until now, however, the blueberry CHS gene family has not been systematically characterized and studied. In this study, we identified 22 CHS genes that could be further classified into four subfamilies from the highbush blueberry (Vaccinium corymbosum) genome. This classification was well supported by the high nucleotide and protein sequence similarities and similar gene structure and conserved motifs among VcCHS members from the same subfamily. Gene duplication analysis revealed that the expansion of the blueberry CHS gene family was mainly caused by segmental duplications. Promoter analysis revealed that the promoter regions of VcCHSs contained numerous cis-acting elements responsive to light, phytohormone and stress, along with binding sites for 36 different types of transcription factors. Gene expression analysis revealed that Subfamily I VcCHSs highly expressed in fruits at late ripening stages. Through transient overexpression, we found that three VcCHSs (VcCHS13 from subfamily II; VcCHS8 and VcCHS21 from subfamily I) could significantly enhance the anthocyanin accumulation and up-regulate the expression of flavonoid biosynthetic structural genes in blueberry leaves and apple fruits. Notably, the promoting effect of the Subfamily I member VcCHS21 was the best. The promoter of VcCHS21 contains a G-box (CACGTG) and an E-box sequence, as well as a bHLH binding site. A yeast one hybridization (Y1H) assay revealed that three anthocyanin biosynthesis regulatory bHLHs (VcAN1, VcbHLH1-1 and VcbHLH1-2) could specifically bind to the G-box sequence (CACGTG) in the VcCHS21 promoter, indicating that the expression of VcCHS21 was regulated by bHLHs. Our study will be helpful for understanding the characteristics and functions of blueberry CHSs.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Antocianinas/metabolismo , Arándanos Azules (Planta)/genética , Arándanos Azules (Planta)/metabolismo , Flavonoides/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373459

RESUMEN

Jujube witches' broom disease (JWB), caused by Candidatus Phytoplasma ziziphi, is the most destructive phytoplasma disease threatening the jujube industry. Tetracycline derivatives treatments have been validated to be capable of recovering jujube trees from phytoplasma infection. In this study, we reported that oxytetracycline hydrochloride (OTC-HCl) trunk injection treatment could recover more than 86% of mild JWB-diseased trees. In order to explore the underlying molecular mechanism, comparative transcriptomic analysis of healthy control (C group), JWB-diseased (D group) and OTC-HCl treated JWB-diseased (T group) jujube leaves was performed. In total, 755 differentially expressed genes (DEGs), including 488 in 'C vs. D', 345 in 'D vs. T' and 94 in 'C vs. T', were identified. Gene enrichment analysis revealed that these DEGs were mainly involved in DNA and RNA metabolisms, signaling, photosynthesis, plant hormone metabolism and transduction, primary and secondary metabolisms, their transportations, etc. Notably, most of the DEGs identified in 'C vs. D' displayed adverse change patterns in 'D vs. T', suggesting that the expression of these genes was restored after OTC-HCl treatment. Our study revealed the influences of JWB phytoplasma infection and OTC-HCl treatment on gene expression profiling in jujube and would be helpful for understanding the chemotherapy effects of OTC-HCl on JWB-diseased jujube.


Asunto(s)
Cytisus , Oxitetraciclina , Phytoplasma , Ziziphus , Enfermedad por Fitoplasma , Ziziphus/genética , Ziziphus/metabolismo , Oxitetraciclina/farmacología , Cytisus/genética , Enfermedades de las Plantas/genética , Phytoplasma/genética , Perfilación de la Expresión Génica
5.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111823

RESUMEN

SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors) are engines for almost all of the membrane fusion and exocytosis events in organism cells. In this study, we identified 84 SNARE genes from banana (Musa acuminata). Gene expression analysis revealed that the expression of MaSNAREs varied a lot in different banana organs. By analyzing their expression patterns under low temperature (4 °C), high temperature (45 °C), mutualistic fungus (Serendipita indica, Si) and fungal pathogen (Fusarium oxysporum f. sp. Cubense Tropical Race 4, FocTR4) treatments, many MaSNAREs were found to be stress responsive. For example, MaBET1d was up-regulate by both low and high temperature stresses; MaNPSN11a was up-regulated by low temperature but down-regulated by high temperature; and FocTR4 treatment up-regulated the expression of MaSYP121 but down-regulated MaVAMP72a and MaSNAP33a. Notably, the upregulation or downregulation effects of FocTR4 on the expression of some MaSNAREs could be alleviated by priorly colonized Si, suggesting that they play roles in the Si-enhanced banana wilt resistance. Foc resistance assays were performed in tobacco leaves transiently overexpressing MaSYP121, MaVAMP72a and MaSNAP33a. Results showed that transient overexpression of MaSYP121 and MaSNPA33a suppressed the penetration and spread of both Foc1 (Foc Race 1) and FocTR4 in tobacco leaves, suggesting that they play positive roles in resisting Foc infection. However, the transient overexpression of MaVAMP72a facilitated Foc infection. Our study can provide a basis for understanding the roles of MaSNAREs in the banana responses to temperature stress and mutualistic and pathogenic fungal colonization.

6.
Curr Issues Mol Biol ; 45(1): 379-399, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36661513

RESUMEN

As one of the most important transcription factors regulating plant anthocyanin biosynthesis, MYB has attracted great attentions. In this study, we identified fifteen candidate anthocyanin biosynthesis related MYB (ABRM) proteins, including twelve R2R3-MYBs and three 1R-MYBs, from highbush blueberry. The subcellular localization prediction results showed that, with the exception of VcRVE8 (localized in chloroplast and nucleus), all of the blueberry ABRMs were nucleus-localized. The gene structure analysis revealed that the exon numbers of the blueberry ABRM genes varied greatly, ranging between one and eight. There are many light-responsive, phytohormone-responsive, abiotic stress-responsive and plant growth and development related cis-acting elements in the promoters of the blueberry ABRM genes. It is noteworthy that almost all of their promoters contain light-, ABA- and MeJA-responsive elements, which is consistent with the well-established results that anthocyanin accumulation and the expression of MYBs are influenced significantly by many factors, such as light, ABA and JA. The gene expression analysis revealed that VcMYB, VcMYB6, VcMYB23, VcMYBL2 and VcPH4 are expressed abundantly in blueberry fruits, and VcMYB is expressed the highest in the red, purple and blue fruits among all blueberry ABRMs. VcMYB shared high similarity with functionally proven ABRMs from many other plant species. The gene cloning results showed that VcMYB had three variable transcripts, but only the transient overexpression of VcMYB-1 promoted anthocyanin accumulation in the green fruits. Our study can provide a basis for future research on the anthocyanin biosynthesis related MYBs in blueberry.

7.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233216

RESUMEN

Ca2+-ATPases have been confirmed to play very important roles in plant growth and development and in stress responses. However, studies on banana (Musa acuminata) Ca2+-ATPases are very limited. In this study, we identified 18 Ca2+-ATPase genes from banana, including 6 P-IIA or ER (Endoplasmic Reticulum) type Ca2+-ATPases (MaEACs) and 12 P-IIB or Auto-Inhibited Ca2+-ATPases (MaACAs). The MaEACs and MaACAs could be further classified into two and three subfamilies, respectively. This classification is well supported by their gene structures, which are encoded by protein motif distributions. The banana Ca2+-ATPases were all predicted to be plasma membrane-located. The promoter regions of banana Ca2+-ATPases contain many cis-acting elements and transcription factor binding sites (TFBS). A gene expression analysis showed that banana Ca2+-ATPases were differentially expressed in different organs. By investigating their expression patterns in banana roots under different concentrations of Ca2+ treatments, we found that most banana Ca2+-ATPase members were highly expressed under 4 mM and 2 mM Ca2+ treatments, but their expression decreased under 1 mM and 0 mM Ca2+ treatments, suggesting that their downregulation might be closely related to reduced Ca accumulation and retarded growth under low Ca2+ and Ca2+ deficiency conditions. Our study will contribute to the understanding of the roles of Ca2+-ATPases in banana growth and Ca management.


Asunto(s)
Musa , Adenosina Trifosfatasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
8.
Biology (Basel) ; 11(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35336767

RESUMEN

Recently, many control methods have been tried and applied in the Fusarium wilt disease control of banana and have achieved definite progresses. In this study, by using 'Zhongjiao No.3' and 'Zhongjiao No.4' banana seedlings as materials, the effects of Serendipita indica and bamboo fungus (Dictyophorae echinovolvata) culture substrates on the growth and Fusarium wilt disease resistance of banana were investigated. Results showed that the plant height, leaf length, leaf width, root length and root thickness, aboveground part fresh weight, root fresh weight, and relative chlorophyll content and nitrogen content in leaves of banana seedlings colonized with S. indica were all greater than those of non-colonized controls, while these parameters of banana seedlings grown in nutrient soil containing D. echinovolvata culture substrates were significantly suppressed. Both S. indica non-colonized and colonized seedlings cultivated in nutrient containing 1/4 D. echinovolvata culture substrates showed much milder symptoms compared with those cultivated in normal nutrient soil, indicating that the addition of bamboo fungus substrates to the soil can enhance the Fusarium wilt resistance of banana. The results obtained in this study can provide a basis for the application of S. indica and bamboo fungus in the prevention and control of banana Fusarium wilt disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA