Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354227

RESUMEN

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/fisiología , Hepatocitos/metabolismo , Perfilación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hígado/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
J Lipid Res ; 65(3): 100513, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38295985

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Cromatina/genética , Histona Demetilasas/genética , Inflamación/genética , Lípidos
3.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1354-1367, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37086230

RESUMEN

BACKGROUND: Electrical stimulation of the left stellate ganglion (LSG) can evoke ventricular arrhythmias (VAs) that originate from the right ventricular outflow tract (RVOT). The involvement of pulmonary artery innervation is unclear. OBJECTIVES: This study investigated the effects of selective pulmonary artery denervation (PADN) on blood pressure (BP), sympathetic activity, ventricular effective refractory period (ERP), and the incidence of VAs induced by LSG stimulation in canines. METHODS: Radiofrequency ablation with basic anesthetic monitoring was used to induce PADN in canines. In Protocol 1 (n = 11), heart rate variability, serum norepinephrine and angiotensin-II levels, BP changes and ventricular ERP in response to LSG stimulation were measured before and after PADN. In Protocol 2 (n = 8), the incidence of VAs induced by LSG stimulation was calculated before and after PADN in a canine model of complete atrioventricular block. In addition, sympathetic nerves in the excised pulmonary arteries were immunohistochemically stained with tyrosine hydroxylase. RESULTS: The low-frequency components of heart rate variability, serum norepinephrine and angiotensin-II levels were remarkably decreased post-PADN. Systolic BP elevation and RVOT ERP shortening induced by LSG stimulation were mitigated by PADN. The number of RVOT-premature ventricular contractions as well as RVOT tachycardia episodes and duration induced by LSG stimulation were significantly reduced after PADN. In addition, a large number of tyrosine hydroxylase-immunoreactive nerve fibers were located in the anterior wall of the pulmonary artery. CONCLUSIONS: PADN ameliorated RVOT ERP shortening, and RVOT-VAs induced by LSG stimulation by inhibiting cardiac sympathetic nerve activity.


Asunto(s)
Arteria Pulmonar , Ganglio Estrellado , Animales , Perros , Tirosina 3-Monooxigenasa , Arritmias Cardíacas , Norepinefrina , Desnervación/efectos adversos , Angiotensinas
4.
Front Endocrinol (Lausanne) ; 13: 849060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620391

RESUMEN

Canine models are increasingly being used in metabolic studies due to their physiological similarity with humans. The present study aimed to identify changes in metabolic pathways and biomarkers with potential clinical utility in a canine model of obesity and metabolic disorders induced by a high-fat diet (HFD). Eighteen male beagles were included in this study, 9 of which were fed a HFD for 24 weeks, and the remaining 9 were fed normal chow (NC) during the same period. Plasma and urine samples were collected at weeks 12 and 24 for untargeted metabolomic analysis. Dogs fed a HFD showed a gradual body weight increase during the feeding period and had hyperlipidemia, increased leukocyte counts, and impaired insulin sensitivity at week 24. Plasma and urine metabonomics analysis displayed clear separations between the HFD-fed and NC-fed dogs. A total of 263 plasma metabolites varied between the two groups, including stearidonic acid, linolenic acid, carnitine, long-chain ceramide, 3-methylxanthine, and theophylline, which are mainly engaged in fatty acid metabolism, sphingolipid metabolism, and caffeine metabolism. A total of 132 urine metabolites related to HFD-induced obesity and metabolic disorders were identified, including 3-methylxanthine, theophylline, pyridoxal 5'-phosphate, and harmine, which participate in pathways such as caffeine metabolism and vitamin digestion and absorption. Eight metabolites with increased abundance (e.g., 3-methylxanthine, theophylline, and harmine) and 4 metabolites with decreased abundance (e.g., trigonelline) in both the plasma and urine of the HFD-fed dogs were identified. In conclusion, the metabolomic analysis revealed molecular events underlying a canine HFD model and identified several metabolites as potential targets for the prevention and treatment of obesity-related metabolic disorders.


Asunto(s)
Cafeína , Enfermedades Metabólicas , Animales , Cafeína/uso terapéutico , Perros , Harmina/uso terapéutico , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/veterinaria , Metaboloma , Obesidad/metabolismo , Teofilina/uso terapéutico
5.
Front Med (Lausanne) ; 8: 761538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746195

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and this nomenclature MAFLD was proposed to renovate its former name, non-alcoholic fatty liver disease (NAFLD). MAFLD/NAFLD have shared and predominate causes from nutrition overload to persistent liver damage and eventually lead to the development of liver fibrosis and cirrhosis. Unfortunately, there is an absence of effective treatments to reverse MAFLD/NAFLD-associated fibrosis. Due to the significant burden of MAFLD/NAFLD and its complications, there are active investigations on the development of novel targets and pharmacotherapeutics for treating this disease. In this review, we cover recent discoveries in new targets and molecules for antifibrotic treatment, which target pathways intertwined with the fibrogenesis process, including lipid metabolism, inflammation, cell apoptosis, oxidative stress, and extracellular matrix formation. Although marked advances have been made in the development of antifibrotic therapeutics, none of the treatments have achieved the endpoints evaluated by liver biopsy or without significant side effects in a large-scale trial. In addition to the discovery of new druggable targets and pharmacotherapeutics, personalized medication, and combinatorial therapies targeting multiple profibrotic pathways could be promising in achieving successful antifibrotic interventions in patients with MAFLD/NAFLD.

6.
Pacing Clin Electrophysiol ; 42(1): 13-19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30426527

RESUMEN

BACKGROUND: Atrial ganglionated plexus (GP) ablation was proved to have therapeutic effects on vasovagal syncope. The study aimed to investigate whether selective ablation of only right anterior GP (ARGP) and right inferior GP (IRGP) was effective in a canine model of vasovagal syncope. METHODS: Seventeen mongrel dogs were divided into control (N = 10) and ablation group (N = 7). Bilateral thoracotomy was performed at the fourth intercostal space and ARGP and IRGP were ablated in the ablation group. A bolus of veratridine (15 ug/kg) was injected into the left atrium to induce vasovagal reflex. Surface electrocardiogram and blood pressure (BP) were continuously monitored. Heart rate (HR) variability was calculated to represent cardiac autonomic tone. RESULTS: Veratridine injection induced vasovagal reflex in all dogs. HR decreased from 149 ± 17 to 89 ± 33 beats/min (P < 0.001) in the control group, while in the ablation group HR decreased from 141 ± 35 to 125 ± 34 beats/min (P = 0.032). The postveratridine HR in the ablation group was significantly higher than that in the control group (P = 0.045). A significantly less intense HR decrease was observed in the ablation group compared with control (-17 ± 16 vs -61 ± 34 beats/min, P = 0.006). Significant BP decreases were induced in both the groups (all P < 0.01), while no evident differences in postveratridine BP and the extent of BP decreases were found between the groups. HR variability revealed significant decrease in cardiac vagal tone after ablation [high-frequency power, 0.50 (0.17-1.05) vs 6.28 (0.68-8.99) ms2 , P = 0.005]. CONCLUSIONS: Selective ablation of ARGP + IRGP weakened cardiac parasympathetic control and significantly attenuated the cardioinhibitory response in an animal model of vasovagal reflex. This ablation strategy might be effective for vasovagal syncope with evident cardioinhibitory response.


Asunto(s)
Ablación por Catéter/métodos , Ganglios Autónomos/cirugía , Atrios Cardíacos/cirugía , Sistema de Conducción Cardíaco/fisiopatología , Síncope Vasovagal/cirugía , Animales , Modelos Animales de Enfermedad , Perros , Electrocardiografía , Ganglios Autónomos/fisiopatología , Atrios Cardíacos/fisiopatología , Síncope Vasovagal/fisiopatología , Toracotomía , Veratridina
7.
PLoS One ; 13(8): e0203083, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30153281

RESUMEN

Cardiac sympathetic tone overdrive is a key mechanism of arrhythmia. Cardiac sympathetic nerves denervation, such as LSG ablation or renal sympathetic denervation, suppressed both the prevalence of VAs and the incidence of SCD. Accumulating evidence demonstrates the ligament of Marshall (LOM) is a key component of the sympathetic conduit between the left stellate ganglion (LSG) and the ventricles. The present study aimed to investigate the roles of the distal segment of LOM (LOMLSPV) denervation in ischemia and reperfusion (IR)-induced VAs, and compared that LSG denervation. Thirty-three canines were randomly divided into group 1 (IR group, n = 11), group 2 (LOMLSPV Denervation + IR, n = 9), and group 3 (LSG Denervation + IR, n = 13). Hematoxylin-Eosin (HE) and Immunohistochemistry staining revealed that LOMLSPV contained bundles of sympathetic but not parasympathetic nerves. IR increased the cardiac sympathetic tone [serum concentrations of noradrenaline (NE) and epinephrine (E)] and induced the prevalence of VAs [ventricular premature beat (VPB), salvo of VPB, ventricular tachycardia (VT), VT duration (VTD) and ventricular fibrillation (VF)]. Both LOMLSPV denervation and LSG denervation could reduce the cardiac sympathetic tone in Baseline (BS) [heart rate variability (HRV)]. Compared with group 1, LOMLSPV denervation and LSG denervation similarly reduced sympathetic tone [NE (1.39±0.068 ng/ml in group 2, 1.29±0.081 ng/ml in group 3 vs 2.32±0.17 ng/ml in group 1, P<0.05) and E (114.64±9.22 pg/ml in group 2, 112.60±9.69 pg/ml in group 3 vs 166.18±15.78 pg/ml in group 1, P<0.05),] and VAs [VT (0±3.00 in group 2, 0±1.75 in group 3 vs 8.00±11.00 in group 1, P<0.05) and VTD (0 ± 4 s in group 2, 0±0.88s in group 3 vs 10.0 ± 22.00s in group 1, P<0.05)] after 2h reperfusion. These findings indicated LOMLSPV denervation reduced the prevalence of VT by suppressing SNS activity. These effects are comparable to those of LSG denervation. In myocardial IR, the anti-arrhythmic effects of LOMLSPV Denervation may be related to the inhibition of the expression of NE and E.


Asunto(s)
Técnicas de Ablación , Arritmias Cardíacas/etiología , Arritmias Cardíacas/cirugía , Isquemia Miocárdica/cirugía , Daño por Reperfusión Miocárdica/cirugía , Pericardio/cirugía , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Desnervación , Modelos Animales de Enfermedad , Perros , Epinefrina/sangre , Masculino , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/complicaciones , Norepinefrina/sangre , Sistema Nervioso Parasimpático/metabolismo , Sistema Nervioso Parasimpático/patología , Pericardio/metabolismo , Pericardio/patología , Distribución Aleatoria , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...