Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 4): 134529, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111485

RESUMEN

Living organisms have developed a miraculous biomineralization strategy to form multistage organic-inorganic composites through the orderly assembly of hard/soft substances, achieving mechanical enhancement of materials from the nanoscale to the macroscale. Inspired by biominerals, this study used polydopamine (PDA) coating as a template to induce the growth of hydroxyapatite (HAP) on the surface of carbon fibers (CFs) for enhancing the interfacial properties of the CF/epoxy resin composites. This polydopamine-assisted hydroxyapatite formation (pHAF) biomimetic mineralization strategy constructs soft/hard ordered structure on the CF surface, which not only improves the chemical reaction activity of the CFs but also increases the fiber surface roughness. This, in turn, enhances the interaction and loading delivery among the fibers and the matrix. Compared to the untreated carbon fiber/epoxy resin (CF/EP) composites, the prepared composites showed a substantial enhancement in interlaminar shear strength (ILSS), flexural strength, and interfacial shear strength (IFSS), with improvements of 45.2 %, 46.9 %, and 60.5 %, respectively. This can be attributed to the HAP nanolayers increasing the adhesion and mechanical interlocking with the CFs to the matrix. This study provides an interface modification method of biomimetic mineralization for the preparation of high strength CF composites.


Asunto(s)
Fibra de Carbono , Durapatita , Indoles , Polímeros , Indoles/química , Durapatita/química , Polímeros/química , Fibra de Carbono/química , Materiales Biomiméticos/química , Biomimética/métodos , Fenómenos Mecánicos , Resistencia al Corte , Propiedades de Superficie , Resinas Epoxi/química
2.
Int J Biol Macromol ; 271(Pt 2): 132716, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815941

RESUMEN

Nanoparticle-containing sizing agents are essential for the overall performance of high-quality carbon fiber (CF) composites. However, the uneven dispersion of nanoparticles often leads to agglomeration on the surface of CF after sizing, consequently diminishing the material properties. In this study, the properties of cellulose nanofibers (CNFs) that can respond to magnetic and electric fields were utilized to achieve three-dimensional to one-dimensional orientations in CFs containing sizing agents. Cobalt ferrite (CoFe2O4) was utilized to enhance the response of CNFs to a magnetic field, and subsequently, it was combined with an electric field to attain a higher degree of orientation. The occurrence of nanoparticle agglomeration is diminished on CF surface, while establishing a structured network. The flexural strength and thermal conductivity of CF composites treated with CoFe2O4 self-assembled CNF sizing agent exhibit an increase of 54.23 % and 57.5 %, respectively, compared to those of desized CF composites, when subjected to magnetic and electric fields. Consequently, the approach can depolymerize the nano-fillers within the sizing agent and orient it into the carbon fiber under the influence of magnetic and electric fields, effectively improving the mechanical properties and thermal conductivity of the composite material.


Asunto(s)
Fibra de Carbono , Celulosa , Campos Magnéticos , Nanofibras , Nanofibras/química , Celulosa/química , Fibra de Carbono/química , Compuestos Férricos/química , Cobalto/química , Electricidad , Conductividad Térmica , Nanocompuestos/química
3.
Int J Biol Macromol ; 260(Pt 1): 129457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232869

RESUMEN

The chemical inertness of the carbon fiber (CF) surface results in suboptimal mechanical properties of the prepared composites. To address this issue, we employed a combination of tannic acid and 3-aminopropyltriethoxysilane mixture (TA-APTES) grafted sodium alginate (SA) as a medium to enhance the interfacial properties of composites through the growth of ZnO nanoparticles on CF surfaces. ZnO nanolayers with rod-like and flower-like structures were obtained by adjusting the pH of the reaction system (pH = 10 and 12, respectively). Characterization results show that in comparison with the untreated CF composites, in the flexural strength, flexural modulus, interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of the as-prepared CF/TA-APTES/SA/ZnO10 (nanorods) composites were improved by 40.8 %, 58.4 %, 44.9 % and 47.8 %, respectively. The prepared CF/TA-APTES/SA/ZnO12 (nanoflowers) composite showed an increase in flexural strength, flexural modulus, ILSS and IFSS by 39.8 %, 63.6 %, 47.3 % and 48.2 %, respectively. These positive results indicate that the ZnO nanolayers increase the interfacial phase area and fiber surface roughness, thereby enhancing mechanical interlocking and load transfer between the fibers and resin matrix. This work provides a novel interfacial modification method for preparing CF composites used in longer and more durable wind turbine blades.


Asunto(s)
Polifenoles , Óxido de Zinc , Fibra de Carbono/química , Ensayo de Materiales , Propiedades de Superficie , Resinas Compuestas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA