Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-13, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38146230

RESUMEN

A new benzophenanthridine alkaloid 6-butanoyldihydrochelerythrine (1) and five known alkaloids 6-acetonyldihydronitidine (2), 6-acetonyldihydrochelerythrine (3), isocorydine (4), (O)-methyltembamide (5), N-(4-methoxyphenethyl)benzamide (6) were isolated from the stem barks of Zanthoxylum rhetsa. These structures were elucidated by 1D, 2D NMR spectroscopy and by mass spectrometry. This is the first time that compounds 2-6 were identified from Zanthoxylum rhetsa and the first time that compounds 4 and 6 were identified from the genus Zanthoxylum. Bioactivity results of isolated compounds showed that 1, 2, 5 and 6 exhibited inhibitory activity against MCF7 and A549 cell lines, while 3 showed the inhibitory activity against A549 cell line; all isolated compounds 1-6 inhibited at least two strain microorganisms; compound 4 showed angiotensin II converting enzyme inhibitory activity in vitro with IC50 value of 65.58 µM and in silico with a docking score of -11.52 kcal/mol.

2.
Nat Prod Res ; : 1-8, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37859419

RESUMEN

Eight new caffeyl hydrazide derivatives (4a-4h) were synthesised via a convenient esterification of caffeic acid with some substituted aryl acid hydrazides. The synthesised caffeyl derivatives were evaluated for their inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages. The fluorobenzoylhydrazide derivatives 4f, 4 g and 4h were found to be the most powerful anti-inflammatory compounds with IC50 values ranging from 11.90 to 24.17 µM, which were more potent than the reference compound L-NMMA (IC50 32.8 µM). Additionally, synthesised compounds have been rationalised by using molecular docking studies which were performed in order to understand insights on the action mechanism of newly synthesised inhibitors against inflammatory mediator (iNOS). Obtained data indicate that compounds 4f, 4h, 4a and 4 g were observed to effectively bind to iNOS receptor with dock score values of -11.62, -10.81, -10.78 and -10.51 kcal/mol, respectively.

3.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175131

RESUMEN

Sea urchins (Tripneustes gratilla) are among the most highly prized seafood products in Vietnam because of their nutritional value and medicinal properties. In this research, lipid classes and the phospholipid (PL) molecular species compositions from the body and eggs of T. gratilla collected in Hon Tam, Nha Trang, Khanh Hoa, Vietnam, were investigated. Hydrocarbon and wax (HW), triacylglycerol (TG), mono- and diacylglycerol (MDAG), free fatty acid (FFA), sterol (ST), polar lipid (PoL), and monoalkyl-diacylglycerol are the major lipid classes. In PL, five main glycerophospholipid classes have been identified, in which 137 PL molecular species were detected in the body and eggs of T. gratilla, including 20 inositol glycerophospholipids (PI), 11 serine glycerophospholipids (PS), 22 ethanolamine glycerophospholipids (PE), 11 phosphatidic acids (PA), and 73 choline glycerophospholipids (PC). PI 18:0/20:4, PS 20:1/20:1, PE 18:1e/20:4, PA 20:1/20:1, and PC 18:0e/20:4 are the most abundant species with the highest content values of 38.65-48.19%, 42.48-44.41%, 41.21-40.03%, 52.42-52.60%, and 7.77-7.18% in each class of the body-eggs, respectively. Interestingly, PL molecules predominant in the body sample were also found in the egg sample. The molecular species with the highest content account for more than 40% of the total species in each molecular class. However, in the PC class containing 73 molecular species, the highest content species amounted to only 7.77%. For both the body and egg TL samples of the sea urchin T. gratilla, a substantial portion of C20:4n polyunsaturated fatty acid was found in PI, PE, and PC, but C16, C18, C20, and C22 saturated fatty acids were reported at low levels. The most dominant polyunsaturated fatty acid in PI, PE, and PC was tetracosapolyenoic C20, while unsaturated fatty acid C20:1 was the most dominant in PS and PA. To our knowledge, this is the first time that the chemical properties of TL and phospholipid molecular species of the PoL of Vietnamese sea urchin (T. gratilla) have been studied.


Asunto(s)
Diglicéridos , Fosfolípidos , Animales , Ácidos Grasos/química , Ácidos Grasos Insaturados , Glicerofosfolípidos , Fosfolípidos/química , Erizos de Mar , Alimentos Marinos , Vietnam
4.
Chem Biodivers ; 20(3): e202200210, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36732885

RESUMEN

There is an ongoing interest to identify alternative pesticidal agents to avoid the chronic problems associated with synthetic pesticides. Essential oils have shown promise as botanical pest control agents. In the present study, the essential oils of four members of the Lamiaceae (Callicarpa candicans, C. erioclona, C. macrophylla, and Karomia fragrans; Vietnamese names: Nàng nàng, Tu châu lông mem, Tu châu lá to and Cà dien, respectively), obtained from wild populations in Vietnam, have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The essential oils were formulated into microemulsions and the essential oils and their microemulsions were screened for mosquito larvicidal activity against Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and for molluscicidal activity against Pomacea canaliculata. Atractylone and (E)-caryophyllene dominated the volatiles of C. candicans (CCEO) and C. erioclona (CEEO), while the major component in C. macrophylla (CMEO) and K. fragrans (KFEO) was (E)-caryophyllene. The essential oils and microemulsions of both C. candicans and C. erioclona exhibited excellent larvicidal activity against all three mosquito species (Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus) with LC50 values <10 µg/mL. Additionally, the larvicidal activity of the microemulsions were significantly improved compared with their free essential oils, especially for C. candicans and C. erioclona. All four essential oils and their microemulsions showed excellent molluscicidal activity with LC50 <10 µg/mL. In most cases, the essential oils and microemulsions showed greater pesticidal activity against target organisms than the non-target freshwater fish, Oreochromis niloticus. The in silico studies on physicochemical and ADMET properties of the major components in the studied essential oils were also investigated and most of the compounds possessed a favorable ADMET profile. Computational modeling studies of the studied compounds demonstrated a favorable binding interaction with the mosquito odorant-binding protein target and support atractylone, ß-selinene, and caryophyllene oxide as potential inhibitors. Based on the observed pesticidal activities of the essential oils and their microemulsions, the Callicarpa species and K. fragrans should be considered for potential cultivation and further exploration as botanical pesticidal agents.


Asunto(s)
Aedes , Callicarpa , Insecticidas , Lamiaceae , Aceites Volátiles , Plaguicidas , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Plaguicidas/farmacología , Vietnam , Insecticidas/farmacología , Insecticidas/química , Larva
5.
Environ Res ; 217: 114784, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395868

RESUMEN

Vast amounts of plastic waste are causing serious environmental issues and urge to develop of new remediation methods. The aim of the study is to determine the role of inorganic (nitric acid), organic (starch addition), and biological (Pseudomonas aeruginosa) soil amendments on the degradation of Polyethylene (PE) and phytotoxic assessment for the growth of lettuce plant. The PE-degrading bacteria were isolated from the plastic-contaminated soil. The strain was identified as Pseudomonas aeruginosa (OP007126) and showed the highest degradation percentage for PE. PE was pre-treated with nitric acid as well as starch and incubated in the soil, whereas P. aeruginosa was also inoculated in PE-contaminated soils. Different combinations were also tested. FTIR analysis and weight reduction showed that though nitric acid was efficient in degradation, the combined application of starch and bacteria also showed effective degradation of PE. Phytotoxicity was assessed using morphological, physiological, and biochemical parameters of plant. Untreated PE significantly affected plants' physiology, resulting in a 45% reduction in leaf chlorophyll and a 40% reduction in relative water content. It also had adverse effects on the biochemical parameters of lettuce. Bacterial inoculation and starch treatment mitigated the harmful impact of stress and improved plants' growth as well as physiological and biochemical parameters; however, the nitric treatment proved phytotoxic. The observed results revealed that bacteria and starch could be effectively used for the degradation of pre-treated PE.


Asunto(s)
Pseudomonas aeruginosa , Contaminantes del Suelo , Biodegradación Ambiental , Polietileno/metabolismo , Hidrólisis , Ácido Nítrico/metabolismo , Plantas , Suelo/química , Contaminantes del Suelo/química , Microbiología del Suelo
6.
ACS Omega ; 8(51): 48994-49008, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162759

RESUMEN

The Zika virus (ZIKV) is believed to cause birth defects, and no anti-ZIKV drugs have been approved by medical organizations to date. Starting from antimicrobial lead compounds with a pyrazolo[3,4-d]pyridazine-7-one scaffold, we synthesized 16 derivatives and screened their ability to interfere with ZIKV infection utilizing a cell-based phenotypic assay. Of these, five compounds showed significant inhibition of ZIKV with a selective index value greater than 4.6. In particular, compound 9b showed the best anti-ZIKV activity with a selectivity index of 22.4 (half-maximal effective concentration = 25.6 µM and 50% cytotoxic concentration = 572.4 µM). Through the brine shrimp lethality bioassay, 9b, 10b, 12, 17a, and 19a showed median lethal dose values in a range of 87.2-100.3 µg/mL. Compound 9b was also targeted to the NS2B-NS3 protease of ZIKV using molecular docking protocols, in which it acted as a noncompetitive inhibitor and strongly bound to five key amino acids (His51, Asp75, Ser135, Ala132, Tyr161). Utilizing the pharmacophore model of 9b, the top 20 hits were identified as prospective inhibitors of NS2B-NS3 protease, and six of them were confirmed for their stability with the protease via redocking and molecular dynamics simulations.

7.
J Mol Model ; 28(11): 356, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222929

RESUMEN

Procyanidin B1 is one of the natural dimeric flavonoids. It has established a great role in antioxidative activity. In the current study, we wish to provide crucial information on its antioxidative action by the DFT computational and docking approaches. From point of thermodynamic view, at the M062X/6-311G(d,p) level, the HAT (hydrogen atom transfer) and SPL-ET (sequential proton loss-electron transfer) are principal antioxidative routes of this compound in gas and methanol, respectively. OH groups of two phenyl rings of this molecule are likely to be the best antiradical sites. In the kinetics of the interactions with HOO• radicals, OH groups of phenyl rings have also generated the best ΔG# (Gibbs free energy of activation) and rate constant K. The antioxidative action of procyanidin B1 is further confirmed by its chelation to metal ions, in which complex formation with Cu2+ having lower binding energy is more stable than complex formation with Zn2+. Docking study revealed that the antioxidative activity of procyanidin B1 involved human tyrosinase enzyme inhibition through interaction with essential residues, focusing on the OH groups of two phenyl rings.


Asunto(s)
Antioxidantes , Protones , Antioxidantes/química , Antioxidantes/farmacología , Biflavonoides , Catequina , Teoría Funcional de la Densidad , Flavonoides/química , Humanos , Hidrógeno , Metanol , Monofenol Monooxigenasa , Proantocianidinas , Termodinámica
8.
Molecules ; 27(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296686

RESUMEN

Essential oils are promising as environmentally friendly and safe sources of pesticides for human use. Furthermore, they are also of interest as aromatherapeutic agents in the treatment of Alzheimer's disease, and inhibition of the enzyme acetylcholinesterase (AChE) has been evaluated as an important mechanism. The essential oils of some species in the genera Callicarpa, Premna, Vitex and Karomia of the family Lamiaceae were evaluated for inhibition of electric eel AChE using the Ellman method. The essential oils of Callicarpa candicans showed promising activity, with IC50 values between 45.67 and 58.38 µg/mL. The essential oils of Callicarpa sinuata, Callicarpa petelotii, Callicarpa nudiflora, Callicarpa erioclona and Vitex ajugifolia showed good activity with IC50 values between 28.71 and 54.69 µg/mL. The essential oils Vitex trifolia subsp. trifolia and Callicarpa rubella showed modest activity, with IC50 values of 81.34 and 89.38, respectively. trans-Carveol showed an IC50 value of 102.88 µg/mL. Molecular docking and molecular dynamics simulation were performed on the major components of the studied essential oils to investigate the possible mechanisms of action of potential inhibitors. The results obtained suggest that these essential oils may be used to control mosquito vectors that transmit pathogenic viruses or to support the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Callicarpa , Lamiaceae , Aceites Volátiles , Plaguicidas , Plantas Medicinales , Vitex , Animales , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Acetilcolinesterasa/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Plaguicidas/farmacología , Pueblo Asiatico
9.
Mol Divers ; 26(1): 229-243, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33765238

RESUMEN

Searching for bioactive agents from medicinal plants, eleven constituents were isolated from Polyscias guilfoylei stem for the first time, including a nucleoside uracil (1), two sterols ß-sitosterol (2) and daucosterol (3), a saponin androseptoside A (4), two lignans (+)-pinoresinol (5) and (+)-syringaresinol (6), four phenolic acids protocatechuic acid (7), methyl protocatechuate (8), caffeic acid (9), and 5-O-caffeoylquinic acid (10), and a flavonoid quercitrin (11). Metabolites 1, 4, and 6-11 have never been observed in genus Polyscias before. Phenolic compounds 7 and 9 possessed the respective IC50 values of 21.33 and 13.88 µg/mL in DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidative assay, as compared with that of the positive control resveratrol (IC50 = 13.21 µg/mL). From density functional theory (DFT) calculated approach, the DPPH free radical scavenging capacity of two compounds 7 and 9 can be explained by the role of OH groups at carbons C-3 and C-4. Antioxidative actions of these two potential agents are followed HAT (H atom transfer) mechanism by OH bond disruption in gas, but SPLET (sequential proton loss electron transfer) mechanism in solvents water and methanol. Compared to 4-OH group, 3-OH group showed better bond disruption enthalpies and better kinetic energies since it reacted with HOO• and DPPH radicals. Sterols 2-3 and flavonoid 11 induced the IC50 values of < 2.0 µg/mL better than the positive control acarbose (IC50 = 184.0 µg/mL) in α-glucosidase inhibitory assay. Their interactions with human intestinal C- and N-terminal domains of α-glucosidase were explored using molecular docking study. The obtained results proved that compounds 2, 3, and 11 bind relatively stronger with the C-terminal domain than to the N-terminal domain through pivotal residues in the binding site and could be hypothesized as mixed inhibitors.


Asunto(s)
Araliaceae , alfa-Glucosidasas , Antioxidantes/química , Antioxidantes/farmacología , Araliaceae/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo
10.
Nat Prod Res ; 35(7): 1107-1114, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31303054

RESUMEN

Two new terpenoids (1-2) and seven known compounds (3-9) were isolated from methanol extract of Callicarpa macrophylla leaves. Their structures were determined to be ent-7α,16ß,17,18-tetrahydroxykaur-15-one (1), 3ß-acetoxy-urs-12-ene-11-one-12-ol (2), ent-1ß-acetoxy-7α,14ß-dihydroxykaur-16-en-15-one (3), 3ß-acetoxy-11α,13ß-dihydroxyolean-12-one (4), ß-amyrin (5), spinasterol (6), ursolic acid (7), ß-sitosterol (8), and daucosterol (9) by analyses of their MS, NMR spectroscopic data and by comparison with those reported in the literature. Compounds 1 - 4, and 7 displayed potential cytotoxic activity towards HepG-2, LU-1, and MCF-7 human cancer cell lines with IC50 values ranging from 0.46 ± 0.21 to 18.14 ± 0.33 µM. Compound 6 showed IC50 values of 14.17 ± 0.21 and 5.72 ± 0.42 µM against Hep-G2 and MCF-7 cell lines, respectively.


Asunto(s)
Callicarpa/química , Terpenos/aislamiento & purificación , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Espectroscopía de Protones por Resonancia Magnética , Terpenos/análisis , Terpenos/química , Terpenos/farmacología , Triterpenos/química , Triterpenos/farmacología , Ácido Ursólico
11.
Sci Rep ; 10(1): 11429, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651416

RESUMEN

The addition of chalcone and amine components into indirubin-3'-oxime resulted in 15 new derivatives with high yields. Structures of new derivatives were also elucidated through 1D, 2D-NMR and HR-MS(ESI) spectra and X-ray crystallography. All designed compounds were screened for cytotoxic activity against four human cancer cell lines (HepG2, LU-1, SW480 and HL-60) and one human normal kidney cell line (HEK-293). Compound 6f exhibited the most marked cytotoxicity meanwhile cytotoxicity of compounds 6e, 6h and 6l was more profound toward cancer cell lines than toward normal cell. These new derivatives were further analyzed via molecular docking studies on GSK-3ß enzyme. Docking analysis shows that most of the derivatives exhibited potential inhibition activity against GSK-3ß with characteristic interacting residues in the binding site. The fast pulling of ligand scheme was then employed to refine the binding affinity and mechanism between ligands and GSK-3ß enzyme. The computational results are expected to contribute to predicting enzyme target of the trial inhibitors and their possible interaction, from which the design of new cytotoxic agents could be created in the future.


Asunto(s)
Diseño de Fármacos , Glucógeno Sintasa Quinasa 3 beta/química , Indoles/química , Oximas/química , Antineoplásicos/farmacología , Dominio Catalítico , Supervivencia Celular , Chalconas/química , Biología Computacional , Cristalografía por Rayos X , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Ligandos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Oximas/farmacología , Unión Proteica , Dominios Proteicos , Espectrometría de Masa por Ionización de Electrospray
12.
RSC Adv ; 10(66): 40284-40290, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35692857

RESUMEN

The main protease (Mpro) of the novel coronavirus SARS-CoV-2, which has caused the COVID-19 pandemic, is responsible for the maturation of its key proteins. Thus, inhibiting SARS-CoV-2 Mpro could prevent SARS-CoV-2 from multiplying. Because new inhibitors require thorough validation, repurposing current drugs could help reduce the validation process. Many recent studies used molecular docking to screen large databases for potential inhibitors of SARS-CoV-2 Mpro. However, molecular docking does not consider molecular dynamics and thus can be prone to error. In this work, we developed a protocol using free energy perturbation (FEP) to assess the potential inhibitors of SARS-CoV-2 Mpro. First, we validated both molecular docking and FEP on a set of 11 inhibitors of SARS-CoV-2 Mpro with experimentally determined inhibitory data. The experimentally deduced binding free energy exhibits significantly stronger correlation with that predicted by FEP (R = 0.94 ± 0.04) than with that predicted by molecular docking (R = 0.82 ± 0.08). This result clearly shows that FEP is the most accurate method available to predict the binding affinity of SARS-CoV-2 Mpro + ligand complexes. We subsequently used FEP to validate the top 33 compounds screened with molecular docking from the ZINC15 database. Thirteen of these compounds were predicted to bind strongly to SARS-CoV-2 Mpro, most of which are currently used as drugs for various diseases in humans. Notably, delamanid, an anti-tuberculosis drug, was predicted to inhibit SARS-CoV-2 Mpro in the nanomolar range. Because both COVID-19 and tuberculosis are lung diseases, delamanid has higher probability to be suitable for treating COVID-19 than other predicted compounds. Analysis of the complexes of SARS-CoV-2 Mpro and the top inhibitors revealed the key residues involved in the binding, including the catalytic dyad His14 and Cys145, which is consistent with the structural studies reported recently.

13.
J Nanosci Nanotechnol ; 15(12): 9585-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26682382

RESUMEN

Poly-lactic acid (PLA) has been widely applied in the medical field (in biomedicines such as medical capsules, surgical sutures and suture wounds) owing to its high biodegradability, good biocompatibility and ability to be dissolved in common solvents. Chitosan (CS) is an abundant polysaccharide and a cationic polyelectrolyte present in nature. In this study, the combination of PLA and CS has been used to form PLA/CS nanocomposites having the advantages of both the original components. To enhance the dispersibility and compatibility between PLA and CS in the PLA/CS nanocomposites, polycaprolactone (PCL) is added as a compatibilizer. The Fourier Transform Infrared spectroscopies prove the existence of the interactions of PCL with PLA and CS. A more regular dispersion of CS of 200-400 nm particle size, is observed in the PLA matrix of the PLA/CS nanocomposites containing PCL, through the Field Emission Scanning Electron Microscopy images. The appearance of one glass transition temperature (T(g)) value of PLA/CS/PCL nanocomposites occuring between the T(g) values of PLA and CS in DSC diagrams confirms the improvement in the compatibility between PLA and CS, due to the presence of PCL. The TGA result shows that PCL plays an important role in enhancing the thermal stability of PLA/CS/PCL nanocomposites. The hydrolysis of PLA/CS/PCL nanocomposites in alkaline and phosphate buffer solutions was investigated. The obtained results show that the PLA/CS/PCL nanocomposites have slower hydrolysis ability than the PLA/CS composites.


Asunto(s)
Quitosano/química , Nanocompuestos/química , Poliésteres/química , Hidrólisis , Microscopía Electrónica de Rastreo
14.
Bioorg Med Chem Lett ; 25(22): 5182-5, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26459207

RESUMEN

The conjugation of azazerumbone ((3E,7E,11E)-5,5,8,12-tetramethylazacyclododeca-3,7,11-trien-2-one (7)) and 2,4-dihydroxychalcones was carried out for the preparation of novel target compounds 9a-g with 1-ethylene-4-methylene-1,2,3-triazole linker and 10a-f with propylene linker between amide nitrogen of azazerumbone and 4-hydroxy group of chalcone. The anti-proliferative activity of these compounds against the LU-1, Hep-G2, MCF-7 and SW480 human cancer cell lines were significantly improved compared to those of azazerumbone or zerumbone. The anti-proliferative activities of (3E,7E,11E)-1-((1-(2-(3-hydroxy-4-((E)-3-(3-methoxyphenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methyl)-5,5,8,12-tetramethyl azacyclododeca-3,7,11-trien-2-one (9b) and (3E,7E,11E)-1-(3-(4-((E)-3-(3,4,5-trimethoxyphenyl)acryloyl)phenoxy)propyl)-5,5,8,12-tetramethylazacyclododeca-3,7,11-trien-2-one (10d) are nearly comparable to those of ellipticine.


Asunto(s)
Antineoplásicos/síntesis química , Chalconas/síntesis química , Lactamas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Chalconas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Elipticinas/farmacología , Humanos , Lactamas/síntesis química , Sesquiterpenos/farmacología , Estereoisomerismo , Relación Estructura-Actividad
15.
Steroids ; 102: 7-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26111591

RESUMEN

Star fishes (Asteroidea) are rich in polar steroids with diverse structural characteristics. The structural modifications of star fish steroids occur at 3ß, 4ß, 5α, 6α (or ß), 7α (or ß), 8, 15α (or ß) and 16ß positions of the steroidal nucleus and in the side chain. Widely found polar steroids in starfishes include polyhydroxysteroids, steroidal sulfates, glycosides, steroid oligoglycosides etc. Bioactivity of these steroids is less studied; only a few reports like antibacterial, cytotoxic activity etc. are available. In continuation of our search for bioactive molecules from natural sources, we undertook in silico screening of steroids from star fishes against Bcl-2 and CDK-4/Cyclin D1 - two important targets of progression and proliferation of cancer cells. We have screened 182 natural steroids from star fishes occurring in different parts of the world and their 282 soft-derivatives by in silico methods. Their physico-chemical properties, drug-likeliness, binding potential with the selected targets, ADMET (absorption, distribution, metabolism, toxicity) were predicted. Further, the results were compared with those of existing steroidal and non steroidal drugs and inhibitors of Bcl-2 and CDK-4/Cyclin D1. The results are promising and unveil that some of these steroids can be potent leads for cancer treatments.


Asunto(s)
Antineoplásicos/química , Ciclina D1 , Quinasa 4 Dependiente de la Ciclina , Proteínas Proto-Oncogénicas c-bcl-2 , Estrellas de Mar/química , Esteroides/química , Animales , Simulación por Computador , Ciclina D1/antagonistas & inhibidores , Ciclina D1/química , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/química , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...