Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Hazard Mater ; 470: 134214, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603908

RESUMEN

Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.

2.
iScience ; 27(5): 109701, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38680658

RESUMEN

Genome-wide circulating cell-free DNA (ccfDNA) fragmentation for cancer detection has been rarely evaluated using blood samples collected before cancer diagnosis. To evaluate ccfDNA fragmentation for detecting early hepatocellular carcinoma (HCC), we first modeled and tested using hospitalized HCC patients and then evaluated in a population-based study. A total of 427 samples were analyzed, including 270 samples collected prior to HCC diagnosis from a population-based study. Our model distinguished hospital HCC patients from controls excellently (area under curve 0.999). A high ccfDNA fragmentation score was highly associated with an advanced tumor stage and a shorter survival. In evaluation, the model showed increasing sensitivities in detecting HCC using 'pre-samples' collected ≥4 years (8.3%), 3-4 years (20.0%), 2-3 years (31.0%), 1-2 years (35.0%), and 0-1 year (36.4%) before diagnosis. These findings suggested ccfDNA fragmentation is sensitive in clinical HCC detection and might be helpful in screening early HCC.

3.
Elife ; 132024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289024

RESUMEN

Eukaryotic cells are constantly exposed to various environmental stimuli. It remains largely unexplored how environmental cues bring about epigenetic fluctuations and affect heterochromatin stability. In the fission yeast Schizosaccharomyces pombe, heterochromatic silencing is quite stable at pericentromeres but unstable at the mating-type (mat) locus under chronic heat stress, although both loci are within the major constitutive heterochromatin regions. Here, we found that the compromised gene silencing at the mat locus at elevated temperature is linked to the phosphorylation status of Atf1, a member of the ATF/CREB superfamily. Constitutive activation of mitogen-activated protein kinase (MAPK) signaling disrupts epigenetic maintenance of heterochromatin at the mat locus even under normal temperature. Mechanistically, phosphorylation of Atf1 impairs its interaction with heterochromatin protein Swi6HP1, resulting in lower site-specific Swi6HP1 enrichment. Expression of non-phosphorylatable Atf1, tethering Swi6HP1 to the mat3M-flanking site or absence of the anti-silencing factor Epe1 can largely or partially rescue heat stress-induced defective heterochromatic maintenance at the mat locus.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen
4.
Entropy (Basel) ; 25(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37761573

RESUMEN

The efficiency and cognitive limitations of manual sample labeling result in a large number of unlabeled training samples in practical applications. Making full use of both labeled and unlabeled samples is the key to solving the semi-supervised problem. However, as a supervised algorithm, the stacked autoencoder (SAE) only considers labeled samples and is difficult to apply to semi-supervised problems. Thus, by introducing the pseudo-labeling method into the SAE, a novel pseudo label-based semi-supervised stacked autoencoder (PL-SSAE) is proposed to address the semi-supervised classification tasks. The PL-SSAE first utilizes the unsupervised pre-training on all samples by the autoencoder (AE) to initialize the network parameters. Then, by the iterative fine-tuning of the network parameters based on the labeled samples, the unlabeled samples are identified, and their pseudo labels are generated. Finally, the pseudo-labeled samples are used to construct the regularization term and fine-tune the network parameters to complete the training of the PL-SSAE. Different from the traditional SAE, the PL-SSAE requires all samples in pre-training and the unlabeled samples with pseudo labels in fine-tuning to fully exploit the feature and category information of the unlabeled samples. Empirical evaluations on various benchmark datasets show that the semi-supervised performance of the PL-SSAE is more competitive than that of the SAE, sparse stacked autoencoder (SSAE), semi-supervised stacked autoencoder (Semi-SAE) and semi-supervised stacked autoencoder (Semi-SSAE).

6.
Angew Chem Int Ed Engl ; 62(7): e202217456, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36511854

RESUMEN

Lanthanide metal-organic frameworks (Ln-MOFs) are promising for luminescence detection of volatile organic compound (VOC) vapors, but usually suffer from the silent or quenched Ln3+ emission. Herein, we report a new dual-emissive Eu-MOF composed of the coordinatively unsaturated Eu9 clusters that afford abundant open metal sites to form a confined "binding pocket" to facilitate the preconcentration and recognition of VOCs. Single-crystal structural analyses reveal that specific analytes can replace the OH oscillators in the first coordination sphere of Eu3+ and form a unique hydrogen-bonding second-sphere adduct tying adjacent Eu9 clusters together to minimize their nonradiative vibrational decay. With the promoted Eu3+ luminescence, the MOF realizes real-time in situ visual sensing of THF vapor (<1 s) and shows a quantitative ratiometric response to the vapor pressure with a limit of detection down to 17.33 Pa. Also, it represents a top-performing ratiometric luminescent thermometer.

7.
Chinese Journal of Stomatology ; (12): 442-450, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-986092

RESUMEN

Objective: Single-cell RNA sequencing (scRNA-seq) was used to analyze the developing mouse molars, in order to construct a spatiotemporal development atlas of pulp cells, and further to reveal the developmental process and regulatory mechanism of tooth development. Methods: Ten mandibular first molars from C57BL/6 mice in postnatal day (PN) 0 and 3 were respectively dissected and digested to obtain single-cell suspensions. scRNA-seq was performed on 10× Genomics platform. PN 7 mouse molar scRNA-seq data were obtained from our previous study. PN 0, 3, and 7 scRNA-seq data were integrated for following analysis. The initial quality control, mapping and single cell expression matrix construction were performed by Cell Ranger. Quality control, standardization, dimensional reduction and cluster analysis were performed by using Seurat. Monocle was used to generate the pseudotime trajectory. Scillus was used to perform gene ontology analysis. In order to detect the spatiotemporal change of different population of pulp cells, the marker genes of each cluster were demonstrated by RNAscope in situ hybridization. Results: There were twenty-six cell clusters within mouse molars, which were identified as eight different cell types, including dental pulp cells, dental follicle cells, epithelial cells, immune cells, endothelial cells, perivascular cells, glial cells and erythrocytes. We further re-clustered and analyzed dental pulp cells. Cluster 0 were mature pulp cells, which located at the upper portion of crown. The main functions of cluster 0 were osteogenesis and extracellular structure organization. Cluster 1 were apical papilla cells, which located at the apical part of roots, whose main functions were extracellular structure organization and organ development. Cluster 2 were cycling cells, which were actively proliferated, resided in the lower portion of the crown. Cluster 3 and 4 were preodontoblasts and odontoblasts, respectively. Their functions were closely related to biomineralization. The proportion of mature pulp cells increased with the development process, while the proportion of cycling cells and odontoblast lineage decreased. According to the expression pattern of marker genes of each cluster, we constructed a cell atlas of dental pulp. Pseudotime trajectory analysis found there were two development trajectories within dental pulp. They both started from SPARC related modular calcium binding 2 (Smoc2)+ dental papilla cells, then went through DNA topoisomerase Ⅱ alpha (Top2a)+ cycling cells, and finally divided into coxsackie virus and adenovirus receptor (Cxadr)+ mature pulp cells or dentin sialophosphoprotein (Dspp)+ odontoblasts two lineages. Conclusions: scRNA-seq could fully discover the intercellular heterogeneity of cells on transcriptome level, which provides a powerful tool to study the process and regulatory mechanism of organ development.

8.
Plant Divers ; 44(6): 617-624, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36540708

RESUMEN

A molecular cytogenetic investigation was conducted on plants of the allohexaploid species Elymus nutans with varying fertility on the Qinghai-Tibet Plateau. Molecular karyotyping revealed that chromosome variants were distributed unevenly among genomes and among different homologue chromosomes in each genome. The plants with varying fertility exhibited significantly higher numbers of chromosome variants than did the normal fertility samples, although both kinds of plants showed the same pattern of high-to-low polymorphism from the Y to St and H genomes. Heterozygosis and karyotype heterozygosity in the plants with varying fertility were 3- and 13-fold higher than those in normal samples, respectively. Significant negative correlations were found not only between seed setting rates and total genome heterozygosity but also between seed setting rates and heterozygosity of each genome in the plants of varying fertility. Chromosome pairing analysis was performed using genomic in situ hybridization in selected plants of different fertility levels. The pairing of chromosomes at meiotic metaphase I was mostly bivalent, although univalent, trivalent, quadrivalent, and other polyvalents also occurred; in addition, chromosome configuration forms and frequencies varied among the studied samples. ANOVA results showed that the average number of ring bivalents in the Y genome was significantly higher than those in the St and H genomes. Significant positive correlations between pollen grain fertility and ring bivalent number were found in the St and H genomes but not in the Y genome. Furthermore, chromosome configuration parameters (total bivalents, numbers of ring and rod bivalents) were found to be significantly correlated with heterozygosity and seed setting rates in the St and H genomes, respectively, but not in the Y genome. It was inferred that the seed setting rate and pollen grain fertility in E. nutans are strongly influenced by the heterozygosity of each genome, but the Y genome differs from the St and H genomes due to chromosome pair alterations. The St and H genomes may contain more chromosome structural variations than the Y genome in E. nutans.

9.
Nat Commun ; 13(1): 5565, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138017

RESUMEN

Microtubules play a crucial role during the establishment and maintenance of cell polarity. In fission yeast cells, the microtubule plus-end tracking proteins (+TIPs) (including the CLIP-170 homologue Tip1) regulate microtubule dynamics and also transport polarity factors to the cell cortex. Here, we show that the E3 ubiquitin ligase Dma1 plays an unexpected role in controlling polarized growth through ubiquitinating Tip1. Dma1 colocalizes with Tip1 to cortical sites at cell ends, and is required for ubiquitination of Tip1. Although the absence of dma1+ does not cause apparent polar growth defects in vegetatively growing cells, Dma1-mediated Tip1 ubiquitination is required to restrain polar growth upon DNA replication stress. This mechanism is distinct from the previously recognized calcineurin-dependent inhibition of polarized growth. In this work, we establish a link between Dma1-mediated Tip1 ubiquitination and DNA replication or DNA damage checkpoint-dependent inhibition of polarized growth in fission yeast.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
PLoS Genet ; 18(9): e1010397, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36108046

RESUMEN

The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.


Asunto(s)
Proteínas de Ciclo Celular , Tiabendazol , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Securina/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Tiabendazol/metabolismo
11.
FASEB J ; 36(9): e22524, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36006032

RESUMEN

As a surveillance mechanism, the activated spindle assembly checkpoint (SAC) potently inhibits the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to ensure accurate chromosome segregation. Although the protein phosphatase 2A (PP2A) has been proposed to be both, directly and indirectly, involved in spindle assembly checkpoint inactivation in mammalian cells, whether it is similarly operating in the fission yeast Schizosaccharomycer pombe has never been demonstrated. Here, we investigated whether fission yeast PP2A is involved in SAC silencing by following the rate of cyclin B (Cdc13) destruction at SPBs during the recovery phase in nda3-KM311 cells released from the inhibition of APC/C by the activated spindle checkpoint. The timing of the SAC inactivation is only slightly delayed when two B56 regulatory subunits (Par1 and Par2) of fission yeast PP2A are absent. Overproduction of individual PP2A subunits either globally in the nda3-KM311 arrest-and-release system or locally in the synthetic spindle checkpoint activation system only slightly suppresses the SAC silencing defects in PP1 deletion (dis2Δ) cells. Our study thus demonstrates that the fission yeast PP2A is not a key regulator actively involved in SAC inactivation.


Asunto(s)
Schizosaccharomyces , Ciclosoma-Complejo Promotor de la Anafase/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Mamíferos/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Huso Acromático/fisiología
12.
Mikrochim Acta ; 189(9): 340, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35995957

RESUMEN

Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 µg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 µg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.


Asunto(s)
Estructuras Metalorgánicas , Cromatografía Líquida de Alta Presión , Fenómenos Magnéticos , Magnetismo/métodos , Estructuras Metalorgánicas/química , Parabenos
13.
Stem Cell Res Ther ; 13(1): 224, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659360

RESUMEN

BACKGROUND: Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis. METHODS: hAMSCs were transplanted into carbon tetrachloride (CCl4)-induced liver fibrosis mice via tail vein, and the effects of hAMSCs on hepatic fibrosis were assessed. The effects of hAMSCs and hAMSCs conditional medium (CM) on the activation of hepatic stellate cells (HSCs) were investigated in vivo and in vitro. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may inhibit the activation of HSCs. Finally, the underlying mechanisms were explored by assessing IGF-1R/PI3K/AKT and GSK3ß/ß-catenin signaling pathways in the activated HSCs (LX-2) with hAMSCs and hAMSCs transfected with corresponding siRNAs. RESULTS: Our results showed that hAMSCs possessed the characterizations of mesenchymal stem cells. hAMSCs significantly reduced liver fibrosis and improved liver function in mice by inhibiting HSCs activation in vivo. Both hAMSCs and hAMSC-CM remarkably inhibited the collagen deposition and activation of LX-2 cells in vitro. Antibody array assay showed that insulin-like growth factor binding protein-3 (IGFBP-3), Dickkopf-3 (DKK-3), and Dickkopf-1 (DKK-1) were highly expressed in the co-culture group and hAMSC-CM group compared with LX-2 group. Western blot assay demonstrated that IGFBP-3, DKK-3, and DKK-1 derived from hAMSCs inhibit LX-2 cell activation through blocking canonical Wnt signaling pathway. CONCLUSIONS: Our results demonstrated that IGFBP-3, Dkk3, and DKK-1 secreted by hAMSCs attenuated liver fibrosis in mice through inhibiting HSCs activation via depression of Wnt/ß-catenin signaling pathway, suggesting that hAMSCs or hAMSC-CM provides an alternative therapeutic approach for the treatment of liver fibrosis.


Asunto(s)
Células Madre Mesenquimatosas , Vía de Señalización Wnt , Amnios , Animales , Células Estrelladas Hepáticas/metabolismo , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo
14.
RSC Adv ; 12(28): 17864-17872, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35765340

RESUMEN

Singlet oxygen (1O2) is a promising reactive species for the selective degradation of organic pollutants. However, it is difficult to generate 1O2 from H2O2 activation with high efficiency and selectivity. In this work, a graphene-supported highly dispersed cobalt catalyst with abundant Co-N x active sites (Co-N-graphene) was synthesized for activating H2O2. The Co-N-graphene catalyzed H2O2 reaction system selectively catalyzed 1O2 production associated with the superoxide radical (O2˙-) as the critical intermediate, as proven by scavenger experiments, electron spin resonance (ESR) spin trapping and a kinetic solvent isotope effect study. This resulted in excellent degradation efficiency towards the model organic pollutant methylene blue (MB), with an outstanding pseudo-first-order kinetic rate constant of 0.432 min-1 (g Lcatalyst -1)-1 under optimal reaction conditions (C H2O2 = 400 mM, initial pH = 9). Furthermore, this Co-N-graphene catalyst enabled strong synergy with HCO3 - in accelerating MB degradation, whereas the scavenger experiment implied that the synergy herein differed significantly from the current Co2+-HCO3 - reaction system, in which contribution of O2˙- was only validated with a Co-N-graphene catalyst. Therefore, this work developed a novel catalyst for boosting 1O2 production from H2O2 activation and will extend the inventory of catalysts for advanced oxidation processes.

15.
Food Chem ; 386: 132843, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35381536

RESUMEN

Efficient magnetic solid phase extraction using crystalline porous polymers can find important applications in food safety. Herein, the core-shell Fe3O4@COFs nanospheres were synthesized by one-pot method and characterized in detail. The porous COF shell with large surface area had fast and selective adsorption for propylparaben via π-π, hydrogen bonding and hydrophobic interactions. The extraction and desorption parameters were evaluated in detail. Under the optimized conditions, the extraction equilibrium was reached only in 5 min, the maximum adsorption capacity for propylparaben was 500 mg g-1 and the proposed Fe3O4@DhaTab-based-MSPE-HPLC-UV method afforded good linearity (4-20000 µg mL-1) with R2 (0.997), low limits of detection (0.55 µg L-1) and limits of quantification (1.5 µg L-1). Furthermore, the developed method was applied to determine propylparaben in soft drinks with the recoveries (97.0-98.3%) and relative standard deviations (0.61 to 3.75%). These results revealed the potential of Fe3O4@DhaTab as efficient adsorbents for parabens in food samples.


Asunto(s)
Estructuras Metalorgánicas , Parabenos , Fenómenos Magnéticos , Extracción en Fase Sólida
16.
Angew Chem Int Ed Engl ; 61(17): e202202073, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35191149

RESUMEN

Developing universal stimuli-responsive materials capable of emitting a broad spectrum of colors is highly desirable. Herein, we deliberately grafted a conformation-adaptable organic chromophore into the established coordination space of a flexible metal-organic framework (MOF). In terms of the coupled structural transformations and the space confinement, the chromophore in the MOF matrix underwent well-regulated conformational changes under physical and chemical stimuli, simultaneously displaying thermo-, piezo-, and solvato-fluoro-chromism with color tunability over the visible range. Owing to the resilient nature and the reduced dimensionality of the selected coordination space, all three color modulations behaved in a sensitive and self-reversible manner, each following a linear correlation of the emission maximum with stimulus. Single-crystal X-ray diffraction of the variable-temperature structures and solvent-inclusion crystals elucidated the intricate color varying mechanisms.

17.
Food Chem ; 366: 130541, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273855

RESUMEN

Penicillium oxalicum has been used as a biocontrol fungus in agriculture for many years, but the antimicrobial substances are still uncertain. Herein, we isolated a linear peptide named Sanxiapeptin in the culture broth of Penicillium oxalicum SG-4 collecting from the Three Gorges riparian zone. Sanxiapeptin exhibited potent inhibitory effect on citrus green mold Penicillium digitatum, the main fungi responsible for postharvest decay. Sanxiapeptin was elucidated as composing of five amino acids, which were ß-amino-α-methoxybutyric acid (Amoba), N-Me-l-Thr, d-Thr, N-Me-l-Val and l-Ser. By analyzing three chemically synthesized oligopeptides with similar structures, we found that the first amino acid of Amoba was crucial to the antifungal activity, as was the methylation of peptide bond. Sanxiapeptin may act as an antimicrobial agent by affecting the function of cell membranes or walls. The antimicrobial spectrum, safety and stability analysis supported that Sanxiapeptin was a promising antifungal agent for citrus preservation.


Asunto(s)
Citrus , Penicillium , Frutas , Enfermedades de las Plantas
18.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34849791

RESUMEN

Using genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Single-domain camelid antibodies generated against GFP have been engineered as nanobodies or GFP-binding proteins (GBPs) that can bind GFP as well as some GFP variants with high affinity and selectivity. In this study, we have used GBP-mCherry fusion protein as a tool to perturb the natural functions of a few kinetochore proteins in the fission yeast Schizosaccharomyces pombe. We found that cells simultaneously expressing GBP-mCherry and the GFP-tagged inner kinetochore protein Cnp1 are sensitive to high temperature and microtubule drug thiabendazole (TBZ). In addition, kinetochore-targeted GBP-mCherry by a few major kinetochore proteins with GFP tags causes defects in faithful chromosome segregation. Thus, this setting compromises the functions of kinetochores and renders cells to behave like conditional mutants. Our study highlights the potential of using GBP as a general tool to perturb the function of some GFP-tagged proteins in vivo with the objective of understanding their functional relevance to certain physiological processes, not only in yeasts, but also potentially in other model systems.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas Portadoras , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
19.
J Pharmacol Sci ; 147(1): 143-155, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34294366

RESUMEN

This study aimed to investigate the therapeutic potential of human umbilical cord mesenchymal stem cells derived exosomes (hUCMSC-Exo) in acute liver failure (ALF) in mice as well as its underlying mechanism. We found that a single tail vein administration of hucMSC-Exo effectively enhanced the survival rate, inhibited apoptosis in hepatocytes, and improved liver function in APAP-induced mouse model of ALF. Furthermore, the deletion of glutathione (GSH) and superoxide dismutase (SOD), generation of malondialdehyde (MDA), and the over production of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP were also inhibited by hucMSC-Exo, indicating that hucMSC-Exo inhibited APAP-induced apoptosis of hepatocytes by reducing oxidative stress. Moreover, hucMSC-Exo significantly down-regulated the levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α in APAP-treated livers. Western blot showed that hucMSC-Exo significantly promoted the activation of ERK1/2 and IGF-1R/PI3K/AKT signaling pathways in APAP-injured LO2 cells, resulting in the inhibition of apoptosis of LO2 cells. Importantly, PI3K inhibitor LY294002 and ERK1/2 inhibitor PD98059 could reverse the function of hucMSC-Exo on APAP-injured LO2 cells in some extent. Our results suggest that hucMSC-Exo offer antioxidant hepatoprotection against APAP in vitro and in vivo by inhibitiing oxidative stress-induced apoptosis via upregulation of ERK1/2 and PI3K/AKT signaling pathways.


Asunto(s)
Acetaminofén/efectos adversos , Exosomas/fisiología , Fallo Hepático/inducido químicamente , Fallo Hepático/genética , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/genética , Cordón Umbilical/citología , Animales , Apoptosis/genética , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/patología , Humanos , Fallo Hepático/patología , Ratones , Estrés Oxidativo/genética
20.
Cancer Cell Int ; 21(1): 381, 2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34273970

RESUMEN

BACKGROUND: Osteosarcoma was the most common primary bone malignancy in children and adolescents. It was imperative to identify effective prognostic biomarkers for this cancer. This study was aimed to identify potential crucial genes of osteosarcoma by integrated bioinformatics analysis. METHODS: Identification of differentially expressed genes from public data gene expression profiles (GSE42352), functional and pathway enrichment analysis, protein-protein interaction (PPI) network construction and module analysis, Cox regression and survival analysis was conducted. RESULTS: Totally 17 co-differential genes were found to be differentially expressed. These genes were enriched in biological processes, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) pathway of inflammatory immune response. PPI network was constructed with 63 differentially expressed genes that co-existed between the test set and the validation set. The area under the receiver operating characteristic curve (AUC value) was 0.855, which indicated that the expression of PODN had a good diagnostic value for osteosarcoma. Furthermore, Cox regression and survival analysis revealed 5 genes were statistically significant. CONCLUSIONS: PODN was regarded as a potential biomarker for the diagnosis and prognosis of osteosarcoma, ACTA2, COL6A1, FAP, OLFML2B and COL6A3, can be used as potential prognostic indicators for osteosarcoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...