Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 7, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191433

RESUMEN

BACKGROUND: The hadal sediment, found at an ocean depth of more than 6000 m, is geographically isolated and under extremely high hydrostatic pressure, resulting in a unique ecosystem. Thaumarchaeota are ubiquitous marine microorganisms predominantly present in hadal environments. While there have been several studies on Thaumarchaeota there, most of them have primarily focused on ammonia-oxidizing archaea (AOA). However, systematic metagenomic research specifically targeting heterotrophic non-AOA Thaumarchaeota is lacking. RESULTS: In this study, we explored the metagenomes of Challenger Deep hadal sediment, focusing on the Thaumarchaeota. Functional analysis of sequence reads revealed the potential contribution of Thaumarchaeota to recalcitrant dissolved organic matter degradation. Metagenome assembly binned one new group of hadal sediment-specific and ubiquitously distributed non-AOA Thaumarchaeota, named Group-3.unk. Pathway reconstruction of this new type of Thaumarchaeota also supports heterotrophic characteristics of Group-3.unk, along with ABC transporters for the uptake of amino acids and carbohydrates and catabolic utilization of these substrates. This new clade of Thaumarchaeota also contains aerobic oxidation of carbon monoxide-related genes. Complete glyoxylate cycle is a distinctive feature of this clade in supplying intermediates of anabolic pathways. The pan-genomic and metabolic analyses of metagenome-assembled genomes belonging to Group-3.unk Thaumarchaeota have highlighted distinctions, including the dihydroxy phthalate decarboxylase gene associated with the degradation of aromatic compounds and the absence of genes related to the synthesis of some types of vitamins compared to AOA. Notably, Group-3.unk shares a common feature with deep ocean AOA, characterized by their high hydrostatic pressure resistance, potentially associated with the presence of V-type ATP and di-myo-inositol phosphate syntheses-related genes. The enrichment of organic matter in hadal sediments might be attributed to the high recruitment of sequence reads of the Group-3.unk clade of heterotrophic Thaumarchaeota in the trench sediment. Evolutionary and genetic dynamic analyses suggest that Group-3 non-AOA consists of mesophilic Thaumarchaeota organisms. These results indicate a potential role in the transition from non-AOA to AOA Thaumarchaeota and from thermophilic to mesophilic Thaumarchaeota, shedding light on recent evolutionary pathways. CONCLUSIONS: One novel clade of heterotrophic non-AOA Thaumarchaeota was identified through metagenome analysis of sediments from Challenger Deep. Our study provides insight into the ecology and genomic characteristics of the new sub-group of heterotrophic non-AOA Thaumarchaeota, thereby extending the knowledge of the evolution of Thaumarchaeota. Video Abstract.


Asunto(s)
Amoníaco , Metagenoma , Metagenoma/genética , Ecosistema , Metagenómica , Archaea/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-37755148

RESUMEN

Two Gram-negative, moderately halophilic, and motile rod bacteria, strains G2-23T and J2-29T, showing catalase- and oxidase-positive activities were isolated from species of the marine algae Chondrus and Ulva, respectively. Both strains optimally grew at 30 °C, pH 7.0 and 2% (w/v) NaCl. Both strains contained ubiquinone-10 as the sole isoprenoid quinone. Strain G2-23T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c/ω6c) as major cellular fatty acids, and phosphatidylethanolamine (PE), phosphatidyl-N-monomethylethanolamine (PME), phosphatidylglycerol (PG), diphosphatidylglycerol and an unidentified phospholipid (PL) as major polar lipids. Strain J2-29T contained summed feature 8, C18 : 1 ω7c 11-methyl and C16 : 0 as major cellular fatty acids and PE, PME, PG and PL as major polar lipids. The genomic DNA G+C contents of strains G2-23T and J2-29T were 59.5 and 62.2 mol%, respectively. Both strains shared 97.9 % 16S rRNA gene sequence similarity, 79.8 % average nucleotide identity (ANI) and 22.8 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic and phylogenomic analyses by 16S rRNA gene and genome sequences, respectively, revealed that strains G2-23T and J2-29T formed different phylogenic lineages within the genus Hoeflea. ANI and dDDH values between strains G2-23T and J2-29T and other Hoeflea type strains were less than 79.0 and 22.1% and 80.5 and 23.3 %, respectively, suggesting that they represent novel species of the genus Hoeflea. In summary, based on their phenotypic, chemotaxonomic and molecular properties, strains G2-23T and J2-29T represent two different novel species of the genus Hoeflea, for which the names Hoeflea algicola sp. nov. (G2-23T=KACC 22714T=JCM 35548T) and Hoeflea ulvae sp. nov. (J2-29T=KACC 22715T=JCM 35549T), respectively, are proposed.


Asunto(s)
Gammaproteobacteria , Phyllobacteriaceae , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos , Nucleótidos
3.
J Clin Med ; 12(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763018

RESUMEN

The skin microbiota barrier participates in skin barrier function in addition to the physical, chemical, and immunological protective barriers, and is affected by environmental aggressors and skincare regimens. To better understand the exact effects of real-life environmental conditions on the skin and determine the protective methods, this study investigates the effects of three topical cosmetic moisturizers (water gel moisturizers with/without yeast extract (Moisturizers K and C) and a thick-emulsion cream moisturizer (Moisturizer L)) on clinical and skin microbiome endpoints in the presence of environmental aggressors during an 8-week, randomized controlled, triple-blind clinical trial with 110 participants, and molecular- as well as biomarker-level endpoints on ex vivo skin explants after exposure to simulate urban environmental conditions. The results show that all moisturizers are well-tolerated and improve skin barrier function and surface moisture content from the baseline, and the improvement is maintained at the last analysis point (3 days after trial completion). Compared with the untreated control areas (samples taken from the upper chest), treatment with Moisturizer K prevented a reduction in bacterial and fungal richness, and increased the change ratio of the relative abundance of commensal bacteria, such as Staphylococcus epidermidis and Ralstonia, at the treated sites (samples taken from the forehead). Moreover, Moisturizer K-treated ex vivo skin explants had higher levels of caspase 14 (a marker of skin barrier function), collagen I, and elastin (structure components), and lower levels of aryl hydrocarbon receptor (AHR; activated by air pollutants) and interleukin-6 (IL-6) than those in explants treated with other moisturizers and in the untreated areas of the skin. These results suggest that a skin postbiotic moisturizer with yeast extract supports the regulation of the skin's microbiome balance and may provide a holistic barrier (involving skin microbiome, physical, chemical, and immune barriers) to protect the skin against environmental aggressors.

4.
mSystems ; 8(3): e0102622, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37306481

RESUMEN

The newly discovered complete ammonia-oxidizing (comammox) Nitrospira has been identified in different environments, including coastal environments, where salinity is one of the most important factors for the abundance and activity of nitrifiers. Here, we demonstrate the effect of salinity on comammox Nitrospira, canonical ammonia-oxidizing bacteria (AOB), and ammonia-oxidizing archaea (AOA) in the intertidal sediments of the Yangtze River estuary based on microcosm experiments, DNA stable-isotope probing (DNA-SIP), and potential ammonium-oxidation rate (PAR) tests for different groups of ammonia oxidizers with selective inhibitors. During microcosm incubations, the abundance of comammox Nitrospira was more sensitive to increased salinity than that of other ammonia oxidizers. The results obtained with DNA-SIP heavy fractions showed that the dominant phylotype in clade A.2 (containing genes involved in the adaptation to haloalkaline environments) had high proportions in comammox Nitrospira community under both freshwater (0.06% salinity) and highly saline water (3% salinity) conditions. In contrast, another phylotype of clade A.2 (which lacks these genes) was dominant only under freshwater conditions. The PARs confirmed that comammox Nitrospira presented greater contributions to nitrification under freshwater conditions with a PAR of 4.37 ± 0.53 mg N·day-1·kg soil-1 (54%) than under saline water conditions with a PAR of 0.60 ± 0.94 mg N·day-1·kg soil-1 (18%). Moreover, AOA were specific to saline water conditions, whereas AOB were common under both freshwater and saline water conditions (44% and 52%, respectively). The present study provided evidence that salinity markedly affects the activity of comammox Nitrospira, and that the salt sensitivity of different phylotypes varies. IMPORTANCE Complete ammonia oxidation (comammox) is a newly discovered type of nitrification through which ammonia is oxidized to nitrate in an organism. Comammox Nitrospira were abundantly found in coastal ecosystems and demonstrated high community diversity. Changes in salinity are considered one of the most important factors to comammox Nitrospira in coastal ecosystems; however, reports on the correlation between them remain inconsistent. Therefore, it is critical to experimentally determine the influence of salinity on comammox Nitrospira in the coastal ecosystem. This study demonstrated a clear effect of salinity on the abundance, activity, and relative contribution of different ammonia oxidizers, especially for comammox Nitrospira. To the best of our knowledge, this is the first study demonstrating comammox Nitrospira activity at seawater salinities, implying the existence of a salt-tolerant type comammox Nitrospira, despite its activity being much lower than in freshwater conditions. The indicated correlation between the activity of specific comammox Nitrospira and salinity is anticipated to provide insights into the distribution of comammox Nitrospira and their potential contributions in estuaries and coastal ecosystems.


Asunto(s)
Ecosistema , Nitrificación , Estuarios , Amoníaco , Ríos , Salinidad , Bacterias/genética , Oxidación-Reducción , Suelo , ADN
5.
Phenomics ; 3(3): 300-308, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325707

RESUMEN

The human microbiome plays a crucial role in human health. In the past decade, advances in high-throughput sequencing technologies and analytical software have significantly improved our knowledge of the human microbiome. However, most studies concerning the human microbiome did not provide repeatable protocols to guide the sample collection, handling, and processing procedures, which impedes obtaining valid and timely microbial taxonomic and functional results. This protocol provides detailed operation methods of human microbial sample collection, DNA extraction, and library construction for both the amplicon sequencing-based measurements of the microbial samples from the human nasal cavity, oral cavity, and skin, as well as the shotgun metagenomic sequencing-based measurements of the human stool samples among adult participants. This study intends to develop practical procedure standards to improve the reproducibility of microbiota profiling of human samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00097-y.

6.
J Hazard Mater ; 448: 130904, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860032

RESUMEN

The accumulation and persistence of Bt toxins in soils from Bt plants and Bt biopesticides may result in environmental hazards such as adverse impacts on soil microorganisms. However, the dynamic relationships among exogenous Bt toxins, soil characteristics, and soil microorganisms are not well understood. Cry1Ab is one of the most commonly used Bt toxins and was added to soils in this study to evaluate subsequent changes in soil physiochemical properties, microbial taxa, microbial functional genes, and metabolites profiles via 16S rRNA gene pyrosequencing, high-throughput qPCR, metagenomic shotgun sequencing, and untargeted metabolomics. Higher additions of Bt toxins led to higher concentrations of soil organic matter (SOM), ammonium (NH+4-N), and nitrite (NO2--N) compared against controls without addition after 100 days of soil incubation. High-throughput qPCR analysis and shotgun metagenomic sequencing analysis revealed that the 500 ng/g Bt toxin addition significantly affected profiles of soil microbial functional genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycling after 100 days of incubation. Furthermore, combined metagenomic and metabolomic analyses indicated that the 500 ng/g Bt toxin addition significantly altered low molecular weight metabolite profiles of soils. Importantly, some of these altered metabolites are involved in soil nutrient cycling, and robust associations were identified among differentially abundant metabolites and microorganisms due to Bt toxin addition treatments. Taken together, these results suggest that higher levels of Bt toxin addition can alter soil nutrients, probably by affecting the activities of Bt toxin-degrading microorganisms. These dynamics would then activate other microorganisms involved in nutrient cycling, finally leading to broad changes in metabolite profiles. Notably, the addition of Bt toxins did not cause the accumulation of potential microbial pathogens in soils, nor did it adversely affect the diversity and stability of microbial communities. This study provides new insights into the putative mechanistic associations among Bt toxins, soil characteristics, and microorganisms, providing new understanding into the ecological impacts of Bt toxins on soil ecosystems.


Asunto(s)
Microbiota , Suelo , Toxinas de Bacillus thuringiensis , ARN Ribosómico 16S , Metaboloma
7.
Artículo en Inglés | MEDLINE | ID: mdl-36790414

RESUMEN

A Gram-stain-negative bacterium with rod-shaped or irregular cells approximately 0.5-0.9×2.0-3.8 µm in size, designated as 960558T, was isolated from sediment sampled in the Mariana Trench. Strain 960558T grows at 4-37 °C (optimum, 28 °C), pH 6-7 (optimum, pH 7) and in the presence of 1-5 % (w/v) NaCl (optimum, 3 %). Strain 960558T utilizes tetradecane or hexadecane as a sole carbon and energy source, respectively. Phylogenetic trees based on 16S rRNA gene sequences and phylogenomic reconstruction revealed a close phylogenetic relationship between strain 960558T and members of the family Rhodobacteraceae by forming a separate branch within the type species of closely related genera. The validly published species that is most closely related to strain 960558T is Planktotalea lamellibrachiae JAM 119T, which has the highest 16S rRNA gene sequence similarity (93.47 %). Ubiquinone 10 is the predominant ubiquinone, while C16 : 0, 11-methyl C18 : 1 ω7c and C18 : 1 ω7c and/or C18 : 1 ω6c are the predominant fatty acids (>10 %). Additionally, phosphatidylglycerol, glycolipids, diphosphatidylglycerol, unidentified polar lipids and unidentified aminolipids are the major polar lipids. The DNA G+C content of strain 960558T is 61 %. Average nucleotide identity and digital DNA-DNA hybridization results of strain 960558T with other type strains are <70.2 and 22.1 %, respectively. Based on its phylogenetic, chemotaxonomic and other phenotypic properties, strain 960558T is considered to represent a novel genus and species within the family Rhodobacteraceae, for which the name Abyssibius alkaniclasticus gen. nov., sp. nov. is proposed. The type strain of Abyssibius alkaniclasticus is 960558T (=KCTC 82619T=MCCC 1K04727T).


Asunto(s)
Ácidos Grasos , Rhodobacteraceae , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN
8.
ISME Commun ; 3(1): 4, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690796

RESUMEN

The environmental impacts of genetically modified (GM) plants remain a controversial global issue. To address these issues, comprehensive environmental risk assessments of GM plants is critical for the sustainable development and application of transgenic technology. In this paper, significant differences were not observed between microbial metagenomic and metabolomic profiles in surface waters of the Bt rice (T1C-1, the transgenic line) and non-Bt cultivars (Minghui 63 (the isogenic line) and Zhonghua 11 (the conventional japonica cultivar)). In contrast, differences in these profiles were apparent in the rhizospheres. T1C-1 planting increased soil microbiome diversity and network stability, but did not significantly alter the abundances of potential probiotic or phytopathogenic microorganisms compared with Minghui 63 and Zhonghua 11, which revealed no adverse effects of T1C-1 on soil microbial communities. T1C-1 planting could significantly alter soil C and N, probably via the regulation of the abundances of enzymes related to soil C and N cycling. In addition, integrated multi-omic analysis of root exudate metabolomes and soil microbiomes showed that the abundances of various metabolites released as root exudates were significantly correlated with subsets of microbial populations including the Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes that were differentially abundant in T1C-1 and Mnghui 63 soils. Finally, the potential for T1C-1-associated root metabolites to exert growth effects on T1C-1-associated species was experimentally validated by analysis of bacterial cultures, revealing that Bt rice planting could selectively modulate specific root microbiota. Overall, this study indicate that Bt rice can directly modulate rhizosphere microbiome assemblages by altering the metabolic compositions of root exudates that then alters soil metabolite profiles and physiochemical properties. This study unveils the mechanistic associations of Bt plant-microorganism-environment, which provides comprehensive insights into the potential ecological impacts of GM plants.

9.
Microbiol Spectr ; 10(5): e0226722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073919

RESUMEN

Characterizing the skin mycobiome is necessary to define its association with the host immune system, particularly in children. In this study, we describe the skin mycobiome on the face, ventral forearm, and calf of 72 prepubescent children (aged 1 to 10 years) and their mothers, based on internal transcribed spacer (ITS) amplicon sequencing. The age and delivery mode at birth are the most influential factors shaping the skin mycobiome. Compared with that of the vaginally born children, the skin mycobiome of caesarean-born children is assembled by predominantly deterministic niche-based processes and exhibits a more fragile microbial network at all three sampling sites. Moreover, vaginal delivery leads to clearer intra- and interindividual specialization of fungal structures with increasing age; this phenomenon is not observed in caesarean-born children. The maternal correlation with children also differs based on the mode of delivery; specifically, the mycobiomes of vaginally born children at younger ages are more strongly correlated with vagina-associated fungal genera (Candida and Rhodotorula), whereas those of caesarean-delivered children at elder age include more skin-associated and airborne fungal genera (Malassezia and Alternaria). Based on this ecological framework, our results suggest that the delivery mode is significantly associated with maturation of the skin fungal community in children. IMPORTANCE Human skin is permanently colonized by microbes starting at birth. The hygiene hypothesis suggests that a lack of early-life immune imprinting weakens the body's resilience against atopic disorders later in life. To better understand fungal colonization following early-life periods affected by interruption, we studied the skin mycobiomes of 73 children and their mothers. Our results suggest a differentiation of the skin mycobiomes between caesarean-born and vaginally born children. Caesarean-born children exhibit a mycobiome structure with more fitted deterministic niche-based processes, a fragile network, and an unchanged microbial dissimilarity over time. In vaginally born children, this dissimilarity increases with age. The results indicate that initial microbial colonization has a long-term impact on a child's skin mycobiome. We believe that these findings will inspire further investigations of the "hygiene hypothesis" in the human microbiome, especially in providing novel insights into influences on the development of the early-life microbiome.


Asunto(s)
Microbiota , Micobioma , Lactante , Recién Nacido , Niño , Femenino , Embarazo , Humanos , Anciano , Piel/microbiología , Candida , Hongos/genética
10.
Microbiol Spectr ; 10(4): e0101622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913204

RESUMEN

Complete ammonia oxidizers (comammox) have been widely detected in riverine and estuarine ecosystems. However, knowledge about the process of comammox community assembly from freshwater to marine environments is still limited. Here, based on deep sequencing, we investigated the community composition of comammox along a salinity gradient in the Pearl River Estuary (PRE), South China. Our results showed that comammox microorganisms in the PRE sediments were extremely diverse and displayed distinct distributional patterns between upstream and downstream habitats. Quantitative PCR demonstrated that comammox was the dominant ammonia-oxidizing microorganism (AOM) in the PRE upstream sediments, and ammonia-oxidizing archaea (AOA) dominated the PRE downstream sediments, while ammonia-oxidizing bacteria (AOB) were not dominant in any section of the PRE. Neutral modeling revealed that stochastic processes explained a limited part of the variation in the comammox community. The majority of beta nearest-taxon index values were higher than 2, indicating that comammox community assembly in the PRE sediments was better explained through a deterministic process than through a stochastic process. Salinity and total nitrogen were the most important contributing factors that shaped the comammox community. This study expanded the current knowledge of the diversity and niche preference of comammox in the estuarine ecosystem, and further enhances our understanding of the assembly of comammox community from freshwater to marine environments. IMPORTANCE Microbial communities are shaped by stochastic (emigration, immigration, birth, death, and genetic drift of species) and deterministic (e.g., environmental factors) processes. However, it remains unknown as to which type of process is more important in influencing the comammox community assembly from freshwater to marine environments. In this study, we compared the relative importance of stochastic and deterministic processes in shaping the assembly of the comammox community, which demonstrated that the deterministic process was more important in determining the community assembly patterns in the PRE ecosystem.


Asunto(s)
Amoníaco , Ecosistema , Archaea/genética , Bacterias/genética , Estuarios , Oxidación-Reducción , Filogenia
11.
Life (Basel) ; 12(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35888046

RESUMEN

Complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate, were recently identified and found to be ubiquitous in artificial systems. Research on the abundance and niche differentiation of comammox in the sludges of wastewater treatment plants (WWTPs) would be useful for improving the nitrogen removal efficiency of WWTPs. Here, we investigated the relative abundance and diversity of comammox in fifteen sludges of five WWTPs that use the anaerobic−anoxic−aerobic process in Jinan, China, via quantitative polymerase chain reaction and high-throughput sequencing of the 16S rRNA gene and ammonia monooxygenase gene. In the activated sludges in the WWTPs, comammox clade A.1 was widely distributed and mostly comprised Candidatus Nitrospira nitrosa-like comammox (>98% of all comammox). The proportion of this clade was negatively correlated (p < 0.01) with the dissolved oxygen (DO) level (1.7−8 mg/L), and slight pH changes (7.20−7.70) affected the structure of the comammox populations. Nitrospira lineage I frequently coexisted with Nitrosomonas, which generally had a significant positive correlation (p < 0.05) with the DO level. Our study provided an insight into the structure of comammox and other nitrifier populations in WWTPs that use the anaerobic−anoxic−aerobic process, broadening the knowledge about the effects of DO on comammox and other nitrifiers.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35675104

RESUMEN

Two strains, TMB456T and TMB1265, were isolated from different locations in the Mariana Trench. Analysis of the 16S rRNA gene and genomic rRNA sequences indicated that they were from the same novel species and were affiliated with the genus Methylophaga of the class Gammaproteobacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the most closely related validly published species were Methylophaga muralis Kr3T (98.1 % similarity) and Methylophaga nitratireducenticrescens JAM1T (97.3 % similarity). Digital DNA-DNA hybridization values of TMB456T with M. muralis Kr3T and M. nitratireducenticrescens JAM1T were <25 %. The average nucleotide identity value between strain TMB456T and M. muralis Kr3T was 80.9 %. The genomic DNA G+C contents of strains TMB456T and TMB1265 were both 44.9 mol %. Strains TMB456T and TMB1265 could grow at 4-37 °C (optimum at 20-28 °C), at pH 3-10 (optimum at pH 7-9) and in the presence of 0-10 % (w/v) NaCl (optimum at 0-1 %). Cells of strains TMB456T and TMB1265 were Gram-negative rods (0.3-0.6 µm×0.7-1.3 µm). Chemotaxonomic analysis showed that ubiquinone 8 was the sole quinone produced by strain TMB456T and that the major cellular fatty acids were iso-C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile of this strain included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphoglycolipids and two unidentified polar lipids. Based on the phenotypic, chemotaxonomic and molecular features, strains TMB456T and TMB1265 belong to a novel species within the genus Methylophaga, for which the name Methylophaga pinxianii sp. nov. is proposed. The type strain is TMB456T (=KCTC 82622T= MCCC 1K05898T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-35639585

RESUMEN

Two strains, TMPB967T and TTPB476, were isolated from two different locations in the Mariana Trench. Cells of strains TMPB967T and TTPB476 were Gram-negative, curved rod-shaped (0.35-0.6 µm×2-4 µm) with flagella. Both strains were catalase- and oxidase-positive. Strains TMPB967T and TTPB476 could grow at 4-37 °C (optimum, 37 °C), at pH 6-9 (optimum, pH 6-7) and in the presence of 0-8 % (w/v) NaCl (optimum, 5 %). Both strains could grow with tetradecane or hexadecane as the sole carbon source. The predominant isoprenoid quinone was ubiquinone 9. The major cellular fatty acids of strains TMPB967T and TTPB476 were C18 : 1 ω9c, C16 : 0 and summed feature 3 (C16 : 1 ω7c or ω6c). The polar lipid profile included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unknown aminolipid. The DNA G+C contents of strains TMPB967T and TTPB476 were 53.1 and 53.0 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the most closely related validly published species were Thalassolituus marinus IMCC1826T (97.1 % similarity) and Thalassolituus oleivorans MIL-1T (95.9 % similarity). Digital DNA-DNA hybridization results of strain TMPB967T with TTPB476, T. marinus IMCC1826T and T. oleivorans MIL-1T were 99.9, 20.9 and 20.2 %, respectively. Average nucleotide identity results of strain TMPB967T with TTPB476, T. marinus IMCC1826T and T. oleivorans MIL-1T were 100, 75.8 and 72.0 %, respectively. On the basis of the phenotypic, chemotaxonomic and molecular features, strains TMPB967T and TTPB476 belong to a novel species within the genus Thalassolituus, for which the name Thalassolituus alkanivorans sp. nov. is proposed. The type strain is TMPB967T (=KCTC 82621T=MCCC 1K05476T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hidrocarburos , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
J Genet Genomics ; 49(6): 569-578, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34974193

RESUMEN

Emerging evidence has highlighted the role of gut microbiome in human health. However, the integrative role of gut microbiome and microbial metabolites in acute myocardial infarction (AMI) remains unclear. The current study profiles the microbial community through 16S rRNA gene sequencing and shotgun metagenomic sequencing and measures fecal short-chain fatty acids and circulating choline pathway metabolites among 117 new-onset AMI cases and 78 controls. Significant microbial alternations are observed in AMI patients compared with controls (P = 0.001). The abundances of nine species (e.g., Streptococcus salivarius and Klebsiella pneumoniae) are positively associated, and one species (Roseburia hominis) is inversely associated with AMI status and severity. A gut microbial score at disease onset is associated with the risk of major adverse cardiovascular events in 3.2 years (hazard ratio [95% CI]: 2.01 [1.04-4.24]) in AMI patients. The molar proportions of fecal acetate and butyrate are higher, and the circulating levels of choline and carnitine are lower in AMI patients than in controls. In addition, disease classifiers show that AMI cases and controls have a more distinct pattern in taxonomical composition than in pathways or metabolites. Our findings suggest that microbial composition and functional potentials are associated with AMI status and severity.


Asunto(s)
Microbioma Gastrointestinal , Infarto del Miocardio , Colina , Heces , Microbioma Gastrointestinal/genética , Humanos , Infarto del Miocardio/genética , ARN Ribosómico 16S/genética
15.
mSphere ; 6(5): e0063621, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34523982

RESUMEN

Integrative analysis of high-quality metagenomics and metabolomics data from fecal samples provides novel clues for the mechanism underpinning gut microbe-human interactions. However, data regarding the influence of fecal collection methods on both metagenomics and metabolomics are sparse. Six fecal collection methods (the gold standard [GS] [i.e., immediate freezing at -80°C with no solution], 95% ethanol, RNAlater, OMNIgene Gut, fecal occult blood test [FOBT] cards, and Microlution) were used to collect 88 fecal samples from eight healthy volunteers for whole-genome shotgun sequencing (WGSS) and untargeted metabolomic profiling. Metrics assessed included the abundances of predominant phyla and α- and ß-diversity at the species, gene, and pathway levels. Intraclass correlation coefficients (ICCs) were calculated for microbes and metabolites to estimate (i) stability (day 4 versus day 0 within each method), (ii) concordance (day 0 for each method versus the GS), and (iii) reliability (day 4 for each method versus the GS). For the top 4 phyla and microbial diversity metrics at the species, gene, and pathway levels, generally high stability and reliability were observed for most methods except for 95% ethanol; similar concordances were seen for different methods. For metabolomics data, 95% ethanol showed the highest stability, concordance, and reliability (median ICCs = 0.71, 0.71, and 0.65, respectively). Taken together, OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles. We recommend using separate collecting methods for gut metagenomic sequencing and fecal metabolomic profiling in large population studies. IMPORTANCE The choice of fecal collection method is essential for studying gut microbe-human interactions in large-scale population-based research. In this study, we examined the effects of fecal collection methods and storage time at ambient temperature on variations in the gut microbiome community composition; microbial diversity metrics at the species, gene, and pathway levels; antibiotic resistance genes; and metabolome profiling. Our findings suggest using different fecal sample collection methods for different data generation purposes. OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal/genética , Metabolómica/métodos , Metagenómica/métodos , Manejo de Especímenes/métodos , Adulto , ADN Bacteriano , Etanol , Femenino , Congelación , Voluntarios Sanos , Humanos , Masculino , Metagenoma/genética , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Temperatura , Secuenciación Completa del Genoma
16.
Environ Microbiol ; 23(10): 6210-6222, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347355

RESUMEN

The foliar surface forms one of the largest aboveground habitats on Earth and maintains plant-fungus relationships that greatly affect ecosystem functioning. Despite many studies with particular plant species, the foliar epiphytic mycobiome has not been studied across a large number of plant species from different taxa. Using high-throughput sequencing, we assessed epiphytic mycobiomes on leaf surfaces of 592 plant species in a botanical garden. Plants of angiosperms, gymnosperms, and pteridophytes were involved. Plant taxonomy, leaf side, growing environment, and evolutionary relationships were considered. We found that pteridophytes showed the higher fungal species diversity, stronger mutualistic fungal interactions, and a greater percentage of putative pathogens than gymnosperms and angiosperms. Plant taxonomic group, leaf side, and growing environment were significantly associated with the foliar epiphytic mycobiome, but the similarity of the mycobiomes among plants was not directly related to the distance of the host evolutionary tree. Our results provide a general understanding of the foliar fungal mycobiomes from pteridophytes to angiosperms. These findings will facilitate our understanding of foliar fungal epiphytes and their roles in plant communities and ecosystems.


Asunto(s)
Micobioma , Ecosistema , Hongos/genética , Plantas , Simbiosis
17.
Sci Total Environ ; 795: 148768, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34247082

RESUMEN

The recent discovery of complete ammonia oxidizers (comammox), which convert ammonia to nitrate in a single organism, revolutionized the conventional understanding that two types of nitrifying microorganisms have to be involved in the nitrification process for more than 100 years. However, how different types of nitrifiers in response to salinity change remains largely unclear. This study not only investigated nitrifier community (including ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), comammox and nitrite-oxidizing Nitrospira) in the Nanliu estuary to find the ecological relationship between salinity and functional communities and also studied the physiology of a typical comammox Nitrospira inopinata in response to a salinity gradient. Based on sequences retrieved with four sets of functional gene primes, comammox Nitrospira was in general, mainly composed of clade A, with a clear separation of clade A1 subgroup in all samples and clade A2 subgroup in low salinity ones. As expected, group I.1b and group I.1a AOA dominated the AOA community in low- and high-salinity samples, respectively. Nitrosomonas-AOB were detected in all samples while Nitrosospira-AOB were mainly found in relatively high-salinity samples. Regarding general Nitrospira, lineages II and IV were the major groups in most of the samples, while lineage I Nitrospira was only detected in low-salinity samples. Furthermore, the comammox pure culture of N. inopinata showed an optimal salinity at 0.5‰ and ceased to grow at 12.8‰ for ammonia oxidation, but remained active for nitrite oxidation. These results show new evidence regarding niche specificity of different nitrifying microorganisms modulated mainly by salinity, and also a clear response by comammox N. inopinata to a wide range of simulated salinity levels.


Asunto(s)
Ríos , Microbiología del Suelo , Amoníaco , Archaea , Bacterias/genética , Estuarios , Nitrificación , Oxidación-Reducción , Filogenia , Salinidad
18.
Sci Total Environ ; 793: 148470, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34166901

RESUMEN

Estuary and coastal environments have essential ecosystem functions in greenhouse gas sinks and removal of nitrogen pollution. Methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) communities play critical functions in the estuary's tidal flat sediments. Therefore, the effects of ammonium on MOB communities and methane on AOB communities need to be further explained. In this study, microcosm incubations with different contents of ammonium or methane were conducted for a relatively short (24 h) or long (28 days) period with tidal flat sediments from the Yangtze River estuary. Subsequently, the tagged highly degenerate primer PCR and DNA-based stable isotope probing method were employed to demonstrate the effects on MOB and AOB populations. The results indicated that the methane consumption was enhanced with ammonium supplements within 24 h of incubation. Supplement of 2 µmol/g d.w.s (µmol per gram dry weight soil) NH4+ increased the amount of MOB and its proportion to the total bacteria (p < 0.05) for 28 days incubation. The ammonium supplement increased the proportion of Methylomonas and Methylobacter based on the 16S rRNA gene. According to the functional gene analysis, the MOB primarily engaged in methane oxidation include Methylomonas, Methylobacter, Methylomicrobium, and Methylosarcina, which were associated with Type Ia MOB. It suggested that ammonium supplement may promote methane oxidation by stimulating the Type Ia MOB in tidal flat sediments of the Yangtze River estuary. The current research helps understand the effect of ammonium on methane consumption in the estuary and coastal environments.


Asunto(s)
Compuestos de Amonio , Methylococcaceae , Ecosistema , Estuarios , Metano , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Ríos
19.
Appl Environ Microbiol ; 87(14): e0022721, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33962978

RESUMEN

The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are involved not only in methane oxidation but also in short-chain alkane oxidation. Here, we describe Rhodococcus sp. strain ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source, and report on the horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMOs) of the CuMMO family and the sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear megaplasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated the mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient Rhodococcus erythropolis strain in a mating experiment and showed similar ethane- and propane-consuming activities. Finally, our findings demonstrate that the horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. IMPORTANCE CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient similar abilities to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane degradation. Our results indicate that plasmids can support the rapid evolution of enzyme-mediated biogeochemical processes.


Asunto(s)
Proteínas Bacterianas/genética , Oxigenasas de Función Mixta/genética , Rhodococcus/genética , Etano/metabolismo , Transferencia de Gen Horizontal , Genes Bacterianos , Oxidación-Reducción , Plásmidos , Propano/metabolismo , Rhodococcus/metabolismo
20.
Mar Genomics ; 57: 100832, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33867118

RESUMEN

The general features and genomic characteristics of gram-positive Deinococcus sp. D7000 isolated from the hadal region of Mariana Trench Challenger Deep were analyzed in this study. Deinococcus sp. D7000 has a genome consisting of 4,558,742 bp, including one chromosome and nine plasmids. This strain exhibits extracellular protease activity under low temperatures. Among 4328 protein-coding sequences (CDSs), 47 encode serine peptidases. Multiple annotation analysis was used to identify two genes encoding extracellular subtilases. In addition, three types of extracellular secretion transporter systems were found upon pathway construction and analysis. Genome analysis offers insights into the putative pathway of extracellular protease and application prospect of Deinococcus sp. D7000 in enzyme development.


Asunto(s)
Deinococcus/genética , Genoma Bacteriano , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deinococcus/enzimología , Océano Pacífico , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...