Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752724

RESUMEN

Eukaryotes swim with coordinated flagellar (ciliary) beating and steer by fine-tuning the coordination. The model organism for studying flagellate motility, Chlamydomonas reinhardtii, employs synchronous, breaststroke-like flagellar beating to swim, and it modulates the beating amplitudes differentially to steer. This strategy hinges on both inherent flagellar asymmetries (e.g. different response to chemical messengers) and such asymmetries being effectively coordinated in the synchronous beating. In C. reinhardtii, the synchrony of beating is known to be supported by a mechanical connection between flagella; however, how flagellar asymmetries persist in the synchrony remains elusive. For example, it has been speculated for decades that one flagellum leads the beating, as its dynamic properties (i.e. frequency, waveform, etc.) appear to be copied by the other one. In this study, we combine experiments, computations, and modeling efforts to elucidate the roles played by each flagellum in synchronous beating. With a non-invasive technique to selectively load each flagellum, we show that the coordinated beating essentially only responds to load exerted on the cis flagellum; and that such asymmetry in response derives from a unilateral coupling between the two flagella. Our results highlight a distinct role for each flagellum in coordination and have implication for biflagellates' tactic behaviors.


Many single-cell organisms use tiny hair-like structures called flagella to move around. To direct this movement, the flagella must work together and beat in a synchronous manner. In some organisms, coordination is achieved by each flagellum reacting to the flow generated by neighbouring flagella. In others, flagella are joined together by fiber connections between their bases, which allow movement to be coordinated through mechanical signals sent between flagella. One such organism is Chlamydomonas reinhardtii, a type of algae frequently used to study flagellar coordination. Its two flagella ­ named trans and cis because of their positions relative to the cell's eyespot ­ propel the cell through water using breaststroke-like movements. To steer, C. reinhardtii adjusts the strength of the strokes made by each flagellum. Despite this asymmetry, the flagella must continue to beat in synchrony to move efficiently. To understand how the cell manages these differences, Wei et al. exposed each flagellum to carefully generated oscillations in water so that each was exposed to different forces and their separate responses could be measured. A combination of experiments, modelling and computer simulations were then used to work out how the two flagella coordinate to steer the cell. Wei et al. found that only the cis flagellum coordinates the beating, with the trans flagellum simply copying the motion of the cis. A direct consequence of such one-way coupling is that only forces on the cis flagellum influence the coordinated beating dynamics of both flagella. These findings shed light on the unique roles of each flagellum in the coordinated movement in C. reinhardtii and have implications for how other organisms with mechanically-connected flagella navigate their environments.


Asunto(s)
Chlamydomonas reinhardtii , Flagelos , Chlamydomonas reinhardtii/fisiología , Flagelos/fisiología
2.
Phys Rev Lett ; 115(23): 238101, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684142

RESUMEN

The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.


Asunto(s)
Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/fisiología , Flagelos/química , Flagelos/fisiología , Modelos Biológicos , Hidrodinámica
3.
IEEE Trans Biomed Eng ; 59(10): 2838-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875240

RESUMEN

We apply the time-frequency analysis to the endocavitarian signal of patients suffering from paroxysmal atrial fibrillation. The time-frequency spectrum reveals the components of the endocavitarian signal. These components are located in the regions of the time-frequency domain that differ for in-rhythm and in-atrial fibrillation signals. By using experimental data, we perform a statistical study of these regions, and we obtain their average value. The difference in the shape of these regions is caused by the re-entry circuits that characterize atrial fibrillation. We propose a propagation model for atrial fibrillation based on the re-entry circuits, which explains the shape of the time-frequency spectrum.


Asunto(s)
Fibrilación Atrial/fisiopatología , Electrocardiografía/métodos , Procesamiento de Señales Asistido por Computador , Humanos , Modelos Estadísticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...