Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 87(8): 085112, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587165

RESUMEN

The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

2.
Appl Radiat Isot ; 109: 172-176, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26846606

RESUMEN

We measured with unprecedented accuracy key features of the (138)La radioactive decays as ß particle energy distribution from 0.5keV to the end-point and ratios of electron capture probabilities PL/PK, PM/PK and PM/PL. This was achieved by making use of LaBr3:Ce and CeBr3 scintillator detectors. The advantage of the presented technique relies on the double role of LaBr3:Ce as source of (138)La and detector medium resulting in a relatively efficient counting statistics and unaltered ß energy detection. The experimental results are compared to advanced computational techniques and significant deviation is found below 20keV with the computational spectrum showing a 5% excess of ß particle relative to the experimental spectrum at 10keV.

3.
Appl Radiat Isot ; 108: 30-34, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26686972

RESUMEN

We measured with unprecedented accuracy key features of the (138)La radioactive decays as ß particle energy distribution from 0.5 keV to the end-point and ratios of electron capture probabilities PL/PK, PM/PK and PM/PL. This was achieved by making use of LaBr3:Ce and CeBr3 scintillator detectors. The advantage of the presented technique relies on the double role of LaBr3:Ce as source of (138)La and detector medium resulting in a relatively efficient counting statistics and unaltered ß energy detection. The experimental results are compared to advanced computational techniques and significant deviation is found below 20 keV with the computational spectrum showing a 5% excess of ß particle relative to the experimental spectrum at 10 keV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA