Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virology ; 566: 98-105, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896902

RESUMEN

The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Herpesvirus Bovino 1/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Inmunoglobulina G/biosíntesis , Rinotraqueítis Infecciosa Bovina/prevención & control , Receptor Toll-Like 8/inmunología , Receptor Toll-Like 9/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Anticuerpos Antivirales , Bovinos , Proliferación Celular , Endosomas/inmunología , Endosomas/metabolismo , Expresión Génica , Herpesvirus Bovino 1/patogenicidad , Inmunidad Innata/efectos de los fármacos , Inmunización Secundaria/métodos , Rinotraqueítis Infecciosa Bovina/genética , Rinotraqueítis Infecciosa Bovina/inmunología , Rinotraqueítis Infecciosa Bovina/virología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Linfocitos/inmunología , Linfocitos/virología , Masculino , Cavidad Nasal/inmunología , Cavidad Nasal/virología , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Vacunación/métodos , Vacunas de Productos Inactivados
2.
Mol Pharm ; 18(7): 2540-2555, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34106726

RESUMEN

Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection. There, we have shown that the dendritic cell targeting using this nanovaccine platform in vivo can boost the immunogenicity, resulting in a long-lasting immunity. In this work, we aim to characterize the α1',2-mannobiose derivative, which is key in the nanovaccine platform. This DC-targeting strategy takes advantage of the specific receptor known as DC-SIGN and exploits its capacity to bind α1,2-mannobiose that is present at terminal ends of oligosaccharides in certain viruses, bacteria, and other pathogens. The oxidative conjugation of α1',2-mannobiose to NH2-PEG2kDa-DSPE allowed us to preserve the chemical structure of the non-reducing mannose of the disaccharide and the OH groups and the stereochemistry of all carbons of the reducing mannose involved in the binding to DC-SIGN. Here, we show specific targeting to DC-SIGN of decorated micelles incubated with the Raji/DC-SIGN cell line and uptake of targeted liposomes that took place in human, bovine, mouse, and teleost fish DCs in vitro, by flow cytometry. Specific targeting was found in all cultures, demonstrating a species-non-specific avidity for this ligand, which opens up the possibility of using this nanoplatform to develop new vaccines for various species, including humans.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Lectinas Tipo C/inmunología , Linfoma/inmunología , Manosa/química , Receptores de Superficie Celular/inmunología , Vacunas/inmunología , Animales , Bovinos , Femenino , Peces , Humanos , Linfoma/terapia , Masculino , Ratones , Ratones Endogámicos BALB C , Especificidad de la Especie , Vacunas/administración & dosificación
3.
Vaccine ; 39(6): 1007-1017, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33446386

RESUMEN

DNA vaccines are capable of inducing humoral and cellular immunity, and are important to control bovine herpesvirus 1 (BoHV-1), an agent of the bovine respiratory disease complex. In previous work, a DNA plasmid that encodes a secreted form of BoHV-1 glycoprotein D (pCIgD) together with commercial adjuvants provided partial protection against viral challenge of bovines. In this work, we evaluate new molecules that could potentiate the DNA vaccine. We show that a plasmid encoding a soluble CD40 ligand (CD40L) and the adjuvant Montanide™ GEL01 (GEL01) activate in vitro bovine afferent lymph dendritic cells (ALDCs). CD40L is a co-stimulating molecule, expressed transiently on activated CD4+ T cells and, to a lesser extent, on activated B cells and platelets. The interaction with its receptor, CD40, exerts effects on the presenting cells, triggering responses in the immune system. GEL01 was designed to improve transfection of DNA vaccines. We vaccinated cattle with: pCIgD; pCIgD-GEL01; pCIgD with GEL01 and CD40L plasmid (named pCIgD-CD40L-GEL01) or with pCIneo vaccines. The results show that CD40L plasmid with GEL01 improved the pCIgD DNA vaccine, increasing anti-BoHV-1 total IgGs, IgG1, IgG2 subclasses, and neutralizing antibodies in serum. After viral challenge, bovines vaccinated with pCIgD-GEL01-CD40L showed a significant decrease in viral excretion and clinical score. On the other hand, 80% of animals in group pCIgD-GEL01-CD40L presented specific anti-BoHV-1 IgG1 antibodies in nasal swabs. In addition, PBMCs from pCIgD-CD40L-GEL01 had the highest percentage of animals with a positive lymphoproliferative response against the virus and significant differences in the secretion of IFNγ and IL-4 by mononuclear cells, indicating the stimulation of the cellular immune response. Overall, the results demonstrate that a plasmid expressing CD40L associated with the adjuvant GEL01 improves the efficacy of a DNA vaccine against BoHV-1.


Asunto(s)
Adyuvantes Inmunológicos , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1 , Inmunogenicidad Vacunal , Vacunas de ADN , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales , Ligando de CD40/genética , Bovinos , Infecciones por Herpesviridae/prevención & control , Herpesvirus Bovino 1/genética , Manitol/análogos & derivados , Plásmidos/genética , Vacunas de ADN/genética
4.
Transbound Emerg Dis ; 68(2): 587-597, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32643286

RESUMEN

New technologies in the field of vaccinology arise as a necessity for the treatment and control of many diseases. Whole virus inactivated vaccines and modified live virus ones used against Bovine Herpesvirus-1 (BoHV-1) infection have several disadvantages. Previous works on DNA vaccines against BoHV-1 have demonstrated the capability to induce humoral and cellular immune responses. Nevertheless, 'naked' DNA induces low immunogenic response. Thus, loading of antigen encoding DNA sequences in liposomal formulations targeting dendritic cell receptors could be a promising strategy to better activate these antigen-presenting cells (APC). In this work, a DNA-based vaccine encoding the truncated version of BoHV-1 glycoprotein D (pCIgD) was evaluated alone and encapsulated in a liposomal formulation containing LPS and decorated with MANα1-2MAN-PEG-DOPE (pCIgD-Man-L). The vaccinations were performed in mice and bovines. The results showed that the use of pCIgD-Man-L enhanced the immune response in both animal models. For humoral immunity, significant differences were achieved when total antibody titres and isotypes were assayed in sera. Regarding cellular immunity, a significant increase in the proliferative response against BoHV-1 was detected in animals vaccinated with pCIgD-Man-L when compared to the response induced in animals vaccinated with pCIgD. In addition, upregulation of CD40 molecules on the surface of bovine dendritic cells (DCs) was observed when cells were stimulated and activated with the vaccine formulations. When viral challenge was performed, bovines vaccinated with MANα1-2MAN-PEG-DOPE elicited better protection which was evidenced by a lower viral excretion. These results demonstrate that the dendritic cell targeting using MANα1-2MAN decorated liposomes can boost the immunogenicity resulting in a long-lasting immunity. Liposomes decorated with MANα1-2MAN-PEG-DOPE were tested for the first time as a DNA vaccine nanovehicle in cattle as a preventive treatment against BoHV-1. These results open new perspectives for the design of vaccines for the control of bovine rhinotracheitis.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Vacunación/veterinaria , Animales , Bovinos , Infecciones por Herpesviridae/prevención & control , Masculino , Ratones , Vacunas de ADN/administración & dosificación
5.
Viral Immunol ; 34(2): 68-78, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33146595

RESUMEN

Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.


Asunto(s)
Herpesvirus Bovino 1 , Vacunas de ADN , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Ligando de CD40/genética , Bovinos , Herpesvirus Bovino 1/genética , Ratones
6.
Front Vet Sci ; 7: 594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195496

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that causes severe economic losses in the livestock industry. Currently available vaccines are based on the inactivated FMD virus (FMDV). Although inactivated vaccines have been effective in controlling the disease, they have some disadvantages. Because of these disadvantages, investigations are being made to produce vaccines in low containment facilities. The use of recombinant empty capsids (also referred as Virus Like Particles, VLPs) has been reported to be a promising candidate as a subunit vaccine because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. Mignaqui and collaborators have produced recombinant FMDV empty capsids from serotype A/ARG/2001 using a scalable technology in mammalian cells that elicited a protective immunity against viral challenge in a mouse model. However, further evaluation of the immune response elicited by these VLPs in cattle is required. In the present work we compare the effect that VLPs or inactivated FMDV has on bovine dendritic cells and the humoral response elicited in cattle after a single vaccination.

7.
Front Vet Sci ; 7: 396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851000

RESUMEN

Foot-and-Mouth Disease (FMD) is an acute viral disease that causes important economy losses. Vaccines with new low-cost adjuvants that stimulate protective immune responses are needed and can be assayed in a mouse model to predict their effectiveness in cattle. Immunostimulant Particle Adjuvant (ISPA), also known as cage-like particle adjuvant, consisting of lipid boxes of dipalmitoyl-phosphatidylcholine, cholesterol, sterylamine, alpha-tocopherol, and QuilA saponin, was shown to enhance protection of a recombinant vaccine against Trypanosoma cruzi in a mouse model. Thus, in the present work, we studied the effects on the magnitude and type of immunity elicited in mice and cattle in response to a vaccine based on inactivated FMD virus (iFMDV) formulated with ISPA. It was demonstrated that iFMDV-ISPA induced protection in mice against challenge and elicited a specific antibody response in sera, characterized by a balanced Th1/Th2 profile. In cattle, the antibody titers reached corresponded to an expected percentage of protection (EPP) higher than 80%. EPP calculates the probability that livestock would be protected against a 10,000 bovine infectious doses challenge after vaccination. Moreover, in comparison with the non-adjuvanted iFMDV vaccine, iFMDV-ISPA elicited an increased specific T-cell response against the virus, including higher interferon gamma (IFNγ)+/CD8+ lymphocyte production in cattle. In this work, we report for first time that an inactivated FMDV serotype A vaccine adjuvanted with ISPA is capable of inducing protection against challenge in a murine model and of improving the specific immune responses against the virus in cattle.

8.
Phys Chem Chem Phys ; 22(29): 16595-16605, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666968

RESUMEN

Passivation of carbon dots via heteroatom doping has been shown to enhance their optical properties and tune their fluorescence signature. Additionally, the incorporation of polymeric precursors in carbon dot synthesis has gained considerable interest with benefits to biological applications namely bioimaging, drug delivery and sensing, among others. In order to combine the desirable attributes of both, fluorescence enhancement and increased biocompatibility, polymers composed of high aromaticity and nitrogen content can be used as efficient carbon dot passivating agents. Here, the synthesis of fluorescent polymer-passivated carbon dots was developed through a microwave-assisted pyrolysis reaction of galactose, citric acid and polydopamine. Passivation of the dots with polydopamine induces a 90 nm red-shift in the fluorescence maxima from 420 to 510 nm. Moreover, passivation results in excitation-independent fluorescence and a 3.5-fold increase in fluorescence quantum yield, which increases from 1.3 to 4.6%. The application of the carbon dots as imaging probes was investigated in in vitro and in vivo model systems. Cytotoxicity studies in J774 and CHO-K1 cell lines revealed reduced cell toxicity for the polydopamine-passivated carbon dots in comparison to their unpassivated counterpart. In BALB/c mice, biodistribution studies demonstrated that regardless of surface passivation, the dots predominantly remained in the circulatory system 90 minutes post inoculation suggesting their potential use for cardiovascular therapies.


Asunto(s)
Carbono/química , Carbono/metabolismo , Indoles/química , Indoles/metabolismo , Rotación Óptica , Polímeros/química , Polímeros/metabolismo , Animales , Línea Celular , Cricetulus , Ratones , Ratones Endogámicos BALB C , Puntos Cuánticos , Distribución Tisular
9.
Transbound Emerg Dis ; 67(6): 2507-2520, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32320534

RESUMEN

Protection against foot-and-mouth disease virus (FMDV) has been linked to the development of a humoral response. In Argentina, the official control tests for assessing the potency of FMD vaccines are protection against podal generalization (PPG) and expected percentage of protection (EPP) curves built with quantitative data of antibodies determined by liquid-phase blocking ELISA (lpELISA). The results of these tests are used to accept or discard vaccines at the batch level. In this report, a mouse model was assessed as an alternative efficacy control for FMDV vaccines. To this aim, groups of cattle (n = 18) and BALB/c mice (n = 16) were inoculated with commercial FMDV vaccines and bleedings were performed 60 days post vaccination (dpv) in cattle and 21 dpv in mice. Specific FMDV antibody titres were measured in both species by a standardized lpELISA. A statistically significant association between antibody levels in cattle and mice has already been demonstrated. However, some vaccines have been misclassified since they were considered protective based on lpELISA results but did not induce good protection in cattle upon challenge. For this reason, other immunological parameters were evaluated to improve the prediction of protection in mice, without the need of using infective virus. In addition, antibody titres by lpELISA, the IgG2b/IgG1 isotype ratio and the Avidity Index were identified as good predictors, resulting in an optimal predictive model of protection. This mouse model could be a simple and economic alternative for testing FMD vaccines since the disadvantages of high costs and facility requirements associated with the use of large animals are overcome.


Asunto(s)
Anticuerpos Antivirales/inmunología , Enfermedades de los Bovinos/prevención & control , Modelos Animales de Enfermedad , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Inmunoglobulina G/sangre , Vacunas Virales/inmunología , Animales , Argentina , Bovinos , Enfermedades de los Bovinos/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Fiebre Aftosa/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Vacunación/veterinaria
10.
PLoS One ; 12(9): e0185184, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28949998

RESUMEN

Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals. A synthetic vaccine candidate consisting of dendrimeric peptides harbouring two copies of a B-epitope [VP1(136-154)] linked to a T-cell epitope [3A(21-35)] of FMDV confers protection to type O FMDV challenge in pigs. Herein we show in cattle that novel dendrimeric peptides bearing a T-cell epitope [VP1(21-40] and two or four copies of a B-cell epitope [VP1(135-160)] from type O1 Campos FMDV (termed B2T and B4T, respectively) elicited FMDV specific immune responses to similar levels to a commercial vaccine. Animals were challenged with FMDV and 100% of vaccinated cattle with B2T or B4T were protected to podal generalization. Moreover, bovines immunized with B4T were completely protected (with no clinical signs) against FMDV challenge after three vaccine doses, which was associated with titers of viral neutralizing antibodies in serum higher than those of B2T group (p< 0.05) and levels of opsonic antibodies similar to those of animals immunized with one dose of FMDV commercial vaccine. Bovines vaccinated with both dendrimeric peptides presented high levels of IgG1 anti FMDV in sera and in mucosa. When IgA in nasal secretions was measured, 20% or 40% of the animals in B2T or B4T groups respectively, showed anti-FMDV IgA titers. In addition, B2T and B4T peptides evoked similar consistent T cell responses, being recognized in vitro by lymphocytes from most of the immunized cattle in the proliferation assay, and from all animals in the IFN-γ production assay. Taken together, these results support the potential of dendrimers B2T or B4T in cattle as a highly valuable, cost-effective FMDV candidate vaccine with DIVA potential.


Asunto(s)
Dendrímeros/farmacología , Fiebre Aftosa/prevención & control , Péptidos/farmacología , Animales , Bovinos , Virus de la Fiebre Aftosa/inmunología , Porcinos , Vacunas Virales
11.
J Leukoc Biol ; 102(5): 1237-1247, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28811319

RESUMEN

Galectin-8 (Gal-8) is a mammalian ß-galactoside-binding lectin, endowed with proinflammatory properties. Given its capacity to enhance antigen-specific immune responses in vivo, we investigated whether Gal-8 was also able to promote APC activation to sustain T cell activation after priming. Both endogenous [dendritic cells (DCs)] and bone marrow-derived DCs (BMDCs) treated with exogenous Gal-8 exhibited a mature phenotype characterized by increased MHC class II (MHCII), CD80, and CD86 surface expression. Moreover, Gal-8-treated BMDCs (Gal-8-BMDCs) stimulated antigen-specific T cells more efficiently than immature BMDCs (iBMDCs). Proinflammatory cytokines IL-3, IL-2, IL-6, TNF, MCP-1, and MCP-5, as well as growth factor G-CSF, were augmented in Gal-8-BMDC conditioned media, with IL-6 as the most prominent. Remarkably, BMDCs from Gal-8-deficient mice (Lgals8-/- BMDC) displayed reduced CD86 and IL-6 expression and an impaired ability to promote antigen-specific CD4 T cell activation. To test if Gal-8-induced activation correlates with the elicitation of an effective immune response, soluble Gal-8 was coadministrated with antigen during immunization of BALB/cJ mice in the experimental foot-and-mouth disease virus (FMDV) model. When a single dose of Gal-8 was added to the antigen formulation, an increased specific and neutralizing humoral response was developed, sufficient to enhance animal protection upon viral challenge. IL-6 and IFN-γ, as well as lymphoproliferative responses, were also incremented in Gal-8/antigen-immunized animals only at 48 h after immunization, suggesting that Gal-8 induces the elicitation of an inflammatory response at an early stage. Taking together, these findings argue in favor of the use of Gal-8 as an immune-stimulator molecule to enhance the adaptive immune response.


Asunto(s)
Presentación de Antígeno , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Fiebre Aftosa/inmunología , Galectinas/inmunología , Inmunidad Adaptativa , Animales , Antígenos Virales/administración & dosificación , Antígenos Virales/genética , Linfocitos T CD4-Positivos/virología , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Células Dendríticas/virología , Fiebre Aftosa/genética , Fiebre Aftosa/prevención & control , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Virus de la Fiebre Aftosa/inmunología , Galectinas/genética , Galectinas/farmacología , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/inmunología , Inmunización , Interleucina-2/genética , Interleucina-2/inmunología , Interleucina-3/genética , Interleucina-3/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quimioatrayentes de Monocitos/genética , Proteínas Quimioatrayentes de Monocitos/inmunología , Transducción de Señal , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
12.
Front Immunol ; 8: 37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28179907

RESUMEN

Bovine herpesvirus-1 (BoHV-1) is the causative agent of bovine infectious rhinotracheitis, an important disease worldwide. Although conventional BoHV-1 vaccines, including those based on the use of modified live virus and also inactivated vaccines, are currently used in many countries, they have several disadvantages. DNA vaccines have emerged as an attractive approach since they have the potential to induce both humoral and cellular immune response; nevertheless, it is largely known that potency of naked DNA vaccines is limited. We demonstrated previously, in the murine model, that the use of adjuvants in combination with a DNA vaccine against BoHV-1 is immunologically beneficial. In this study, we evaluate the immune response and protection against challenge elicited in bovines, by a DNA vaccine carrying the sequence of secreted version of glycoprotein D (gD) of BoHV-1 formulated with chemical adjuvants. Bovines were vaccinated with formulations containing the sequence of gD alone or in combination with adjuvants ESSAI 903110 or Montanide™ 1113101PR. After prime vaccination and two boosters, animals were challenged with infectious BoHV-1. Formulations containing adjuvants Montanide™ 1113101PR and ESSAI 903110 were both, capable of increasing humoral immune response against the virus and diminishing clinical symptoms. Nevertheless, only formulations containing adjuvant Montanide™ 1113101PR was capable of improving cellular immune response and diminishing viral excretion. To our knowledge, it is the first time that a BoHV-1 DNA vaccine is combined with adjuvants and tested in cattle. These results could be useful to design a vaccine for the control of bovine rhinotracheitis.

13.
Viral Immunol ; 28(6): 343-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26133047

RESUMEN

This study investigated the induction of humoral and cellular immune response by a DNA vaccine based on the bovine herpesvirus-1 (BoHV-1) glycoprotein D with commercial adjuvants (SEPPIC), in the murine model and in a preliminary assay in cattle, in order to select vaccines candidates that can improve cellular response. A DNA vaccine with most of the adjuvants used in this study was able to elicit a gD and viral-specific humoral immune response in vaccinated mice. Nevertheless, only a DNA vaccine with Montanide GEL 01 PR and Montanide Essai 903110 induced viral-specific proliferation and the highest levels of IFN-γ secretion. Since a cellular response is important to deal with BoHV-1 infection, both adjuvants were tested in a small trial using bovines to corroborate improvement of a cellular response in the natural host. It was observed that a DNA vaccine with Montanide Essai 903110 induced the highest BoHV-1 specific IFN-γ production in cattle. So, this adjuvant is proposed as a suitable candidate to be tested in a BoHV-1 DNA vaccine for protection against viral challenge in bovines.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Herpesvirus Bovino 1/inmunología , Vacunas contra Herpesvirus/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Antivirales/sangre , Bovinos , Proliferación Celular , Evaluación Preclínica de Medicamentos , Vacunas contra Herpesvirus/administración & dosificación , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Ratones Endogámicos BALB C , Vacunas de ADN/administración & dosificación
14.
Vaccine ; 33(38): 4945-53, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26212005

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. This pathology is caused by foot-and-mouth disease virus (FMDV). Over time, the development of vaccines to prevent the spread of this illness became essential. Vaccines currently used contain the inactivated form of the virus. However, vaccination generates an immune response different to that induced by the infection. We investigated whether these differences are related to intracellular mechanisms on dendritic cells (DCs). As a result, we demonstrated that the internalization of infective virus triggered the phosphorylation of ERK1/2, which was involved in the activation of caspase-9, the intrinsic pathway of apoptosis and the delivery of viral peptides on MHC class I molecules. While, inactivated virus (iFMDV) did not affect this pathway or any function mediated by its activation. As described, infectious virus in DCs was also associated to autophagy LC3 protein and was associated to lysosomal protein Lamp-2; contrary to observe for the iFMDV. Strikingly, the processing of viral antigens to accommodate in class I molecules does not appear to involve the proteasome. Finally, this increased presentation promotes a specific cytotoxic response against infectious virus.


Asunto(s)
Apoptosis , Células Dendríticas/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Virus de la Fiebre Aftosa/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Masculino , Ratones Endogámicos BALB C , Fosforilación
15.
Int J Nanomedicine ; 9: 963-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24611012

RESUMEN

Dendritic cells (DC) are antigen-presenting cells uniquely capable of priming naïve T cells and cross-presenting antigens, and they determine the type of immune response elicited against an antigen. TAT peptide (TATp), is an amphipathic, arginine-rich, cationic peptide that promotes penetration and translocation of various molecules and nanoparticles into cells. TATp-liposomes (TATp-L) used for DC transfection were prepared using TATp derivatized with a lipid-terminated polymer capable of anchoring in the liposomal membrane. Here, we show that the addition of TATp to DNA-loaded liposomes increased the uptake of DNA in DC. DNA-loaded TATp-L increased the in vitro transfection efficiency in DC cultures as evidenced by a higher expression of the enhanced green fluorescent protein and bovine herpes virus type 1 glycoprotein D (gD). The de novo synthesized gD protein was immunologically stimulating when transfections were performed with TATp-L, as indicated by the secretion of interleukin 6.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Liposomas/administración & dosificación , Liposomas/química , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Transfección/métodos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Animales , Bovinos , Células Dendríticas/efectos de los fármacos , Femenino , Proteínas Fluorescentes Verdes/genética , Interleucina-6/biosíntesis , Ratones , Ratones Endogámicos BALB C , Nanomedicina , Proteínas Virales/genética
16.
BMC Vet Res ; 10: 8, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24401205

RESUMEN

BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEßgal) generated by homologous recombination, replacing the viral gE gene with the ß-galactosidase (ßgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEßgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEßgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEßgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEßgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEßgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE ßgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEßgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Herpesvirus Bovino 1/metabolismo , Proteínas Virales/metabolismo , Vacunas Virales/inmunología , Animales , Bovinos , Línea Celular , Perros , Femenino , Eliminación de Gen , Regulación Viral de la Expresión Génica/fisiología , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/prevención & control , Complicaciones Infecciosas del Embarazo/veterinaria , Complicaciones Infecciosas del Embarazo/virología , Vacunas Atenuadas , Vacunas de Productos Inactivados , Proteínas Virales/genética , Vacunas Virales/efectos adversos
17.
Vet Microbiol ; 165(3-4): 333-40, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23683999

RESUMEN

The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 µg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV.


Asunto(s)
Adenoviridae/inmunología , Proteínas de la Cápside/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Vacunación/veterinaria , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Adenoviridae/genética , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/genética , Modelos Animales de Enfermedad , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Vectores Genéticos/genética , Células HEK293 , Herpesviridae/genética , Herpesviridae/inmunología , Humanos , Inmunoglobulina G/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Vacunas Virales/genética , Inactivación de Virus , Replicación Viral/genética
18.
Viral Immunol ; 25(1): 63-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22233252

RESUMEN

A live system to release heterologous antigens using an attenuated Salmonella strain was developed. We transformed Salmonella typhimurium LVR03 (S. LVR03) with a recombinant pTECH2 vector encoding 0, 1, 2, and 4 tandem copies of an imunogenic peptide of bovine herpes virus-1 (BoHV-1) glycoprotein D (gD). The system used yielded peptides fused to the non-toxic C fragment of the tetanus toxin (TetC), which has been shown to have adjuvant properties. Inoculation of BALB/c mice with the transformed Salmonella strains gave rise to a mild self-limited infection, with primary replication of bacteria occurring in Peyer's patches, even when the bacteria was administered intranasally. Humoral and cellular immune responses directed against the BoHV-1 antigens were evaluated after oral or intranasal administration of the recombinant bacteria. The results showed that the S. LVR03-dimer vaccine induced specific humoral (IgG in serum and IgG(1) and IgA in saliva), and cellular immune responses (lymphoproliferation and lymphokine secretion), against not only the selected peptide and whole gD, but also against BoHV-1, when administered intranasally. This is the first time Salmonella has been used as an expression vector to induce immunity against BoHV-1. This work demonstrates the feasibility of using this antigen-release system and encourages future experimentation with a bovine experimental model.


Asunto(s)
Infecciones por Herpesviridae/prevención & control , Herpesvirus Bovino 1/inmunología , Péptidos/inmunología , Secuencias Repetidas en Tándem/genética , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Bovinos , Línea Celular , Vectores Genéticos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/metabolismo , Activación de Linfocitos , Linfocinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Péptidos/genética , Péptidos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vacunas Virales/inmunología , Vacunas Virales/metabolismo
19.
Vaccine ; 28(46): 7363-72, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20851082

RESUMEN

HSV-1 amplicon vectors encoding heterologous antigens were capable to mediate in situ generation of protein synthesis and to generate a specific immune response to the corresponding antigens. In this study, foot-and-mouth disease (FMD) virus antigens were used to generate a genetic vaccine prototype. The amplicons were designed to provide a high safety profile as they do not express any HSV-1 genes when packaged using a helper virus-free system, and they are able to encapsidate several copies of the transgene or allow the simultaneous expression of different genes. Virus-like particles were produced after cell processing of the delivered DNA. Inoculation of mice with 5 × 10(5) transducing units of amplicon vectors resulted in FMDV-specific humoral responses in the absence of adjuvants, which were dependent on the in situ de novo production of the vector-encoded antigens. Challenge of mice vaccinated with these amplicons with a high dose of live virus, resulted in partial protection, with a significant reduction of viremia. This work highlights the potential use of a HSV-1 amplicon vector platform for generation of safe genetic vaccines.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Herpesvirus Humano 1/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/biosíntesis , Antígenos Virales/inmunología , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/inmunología , Chlorocebus aethiops , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Vectores Genéticos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Transgenes , Vacunas de ADN/biosíntesis , Células Vero , Vacunas Virales/biosíntesis
20.
J Control Release ; 134(1): 41-6, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19059290

RESUMEN

Antigen presenting cells (APC) are among the most important cells of the immune system since they link the innate and the adaptative immune responses, directing the type of immune response to be elicited. To modulate the immune response in immune preventing or treating therapies, gene delivery into immunocompetent cells could be used. However, APC are very resistant to transfection. To increase the efficiency of APC transfection, we have used liposome-based lipoplexes additionally modified with cell-penetrating TAT peptide (TATp) for better intracellular delivery of a model plasmid encoding for the enhanced-green fluorescent protein (pEGFP). pEGFP-bearing lipoplexes made of a mixture of PC:Chol:DOTAP (60:30:10 molar ratio) with the addition of 2% mol of polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate (plain-L) or TATp-PEG-PE (TATp-L) were shown to effectively protect the incorporated DNA from degradation. Uptake assays of rhodamine-labeled lipoplexes and transfections with the EGFP reporter gene were performed with APC derived from the mouse spleen. TATp-L-based lipoplexes allowed for significantly enhanced both, the uptake and transfection in APC. Such a tool could be used for the APC transfection as a first step in immune therapy.


Asunto(s)
Células Presentadoras de Antígenos/citología , Liposomas/análisis , Transfección/métodos , Animales , Células Presentadoras de Antígenos/metabolismo , Células Cultivadas , ADN/química , Productos del Gen tat/química , Productos del Gen tat/genética , Liposomas/química , Ratones , Bazo/citología , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...