Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 103(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438620

RESUMEN

The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.


Asunto(s)
Virus de la Hepatitis B del Pato , Hepatitis B Crónica , Hepatitis B , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Virus de la Hepatitis B del Pato/genética , Virus de la Hepatitis B del Pato/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , Uracilo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Replicación Viral/genética
2.
J Invest Dermatol ; 142(7): 1793-1803.e11, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34968501

RESUMEN

Merkel cell polyomavirus (MCPyV) is the causative agent of an aggressive skin tumor, Merkel cell carcinoma. The viral genome is integrated into the tumor genome and harbors nonsense mutations in the helicase domain of large T antigen. However, the molecular mechanisms by which the viral genome gains the tumor-specific mutations remain to be elucidated. Focusing on host cytosine deaminases APOBEC3s, we find that A3A, A3B, or A3G introduces A3-specific mutations into episomal MCPyV genomes in MCPyV-replicating 293-derivative cells. Sequence analysis of MCPyV genomes retrieved from the NCBI database revealed a decrease of TpC dinucleotide, a preferred target for A3A and A3B, in the 3'-region of the large T antigen‒coding sequence. The viral DNA isolated from tumors contained mutated cytosines, with a remarkable bias toward TpC dinucleotide. Analysis of publicly available microarray data showed that expression of IFN-γ and cytotoxic T lymphocyte markers was positively correlated with the A3A, A3B, and A3G levels in MCPyV-positive but not in MCPyV-negative tumors. Finally, IFN-γ treatment induced A3B and A3G expression in the MCPyV-positive Merkel cell carcinoma cell line MS-1. These results suggest that the IFN-γ-A3B axis plays pivotal roles in evolutionally shaping MCPyV genomic sequences and in generating tumor-specific large T antigen mutations during development of Merkel cell carcinoma.


Asunto(s)
Carcinoma de Células de Merkel , Citidina Desaminasa , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Citidina Desaminasa/genética , Humanos , Interferón gamma/metabolismo , Poliomavirus de Células de Merkel/genética , Antígenos de Histocompatibilidad Menor , Mutagénesis , Neoplasias Cutáneas/genética
3.
Front Microbiol ; 12: 753823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733263

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the influence of mutations in the SARS-CoV-2 gene on clinical outcomes is critical for treatment and prevention. Here, we analyzed all high-coverage complete SARS-CoV-2 sequences from GISAID database from January 1, 2020, to January 1, 2021, to mine the mutation hotspots associated with clinical outcome and developed a model to predict the clinical outcome in different epidemic strains. Exploring the cause of mutation based on RNA-dependent RNA polymerase (RdRp) and RNA-editing enzyme, mutation was more likely to occur in severe and mild cases than in asymptomatic cases, especially A > G, C > T, and G > A mutations. The mutations associated with asymptomatic outcome were mainly in open reading frame 1ab (ORF1ab) and N genes; especially R6997P and V30L mutations occurred together and were correlated with asymptomatic outcome with high prevalence. D614G, Q57H, and S194L mutations were correlated with mild and severe outcome with high prevalence. Interestingly, the single-nucleotide variant (SNV) frequency was higher with high percentage of nt14408 mutation in RdRp in severe cases. The expression of ADAR and APOBEC was associated with clinical outcome. The model has shown that the asymptomatic percentage has increased over time, while there is high symptomatic percentage in Alpha, Beta, and Gamma. These findings suggest that mutation in the SARS-CoV-2 genome may have a direct association with clinical outcomes and pandemic. Our result and model are helpful to predict the prevalence of epidemic strains and to further study the mechanism of mutation causing severe disease.

4.
Biochem Biophys Res Commun ; 567: 1-8, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34130179

RESUMEN

Natural product-derived crude drugs are expected to yield an abundance of new drugs to treat infectious diseases. Hepatitis C virus (HCV) is an oncogenic virus that significantly impacts public health. In this study, we sought to identify anti-HCV compounds in extracts of natural products. A total of 110 natural compounds extracted from several herbal medicine plants were examined for antiviral activity against HCV. Using a Huh7-mCherry-NLS-IPS reporter system for HCV infection, we first performed a rapid screening for anti-HCV compounds extracted from crude drugs. The compounds threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-butoxypropan-1-ol (#106) and medioresinol (#110), which were extracted from Crataegus cuneate, exhibited anti-HCV activity and significantly inhibited HCV production in a dose-dependent manner. Analyses using HCV pseudoparticle and subgenomic replicon systems indicated that compounds #106 and #110 specifically inhibit HCV RNA replication but not viral entry or translation. Interestingly, compound #106 also inhibited the replication and production of hepatitis A virus. Our findings suggest that C. cuneate is a new source for novel anti-hepatitis virus drug development.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Extractos Vegetales/farmacología , Antivirales/química , Productos Biológicos/química , Productos Biológicos/farmacología , Crataegus/química , Hepacivirus/fisiología , Humanos , Extractos Vegetales/química , Plantas Medicinales/química , Replicación Viral/efectos de los fármacos
5.
Sci Rep ; 10(1): 20763, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247161

RESUMEN

Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1ß reduced the level of HBV RNA. However, the mechanism underlying IL-1ß-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1ß, suggesting that MCPIP1 is required for IL-1ß-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1ß.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Interacciones Huésped-Patógeno , Interleucina-1beta/farmacología , ARN Viral/química , Replicación Viral , Animales , Células Hep G2 , Hepatitis B/metabolismo , Hepatitis B/virología , Humanos , Ratones , ARN Viral/efectos de los fármacos , ARN Viral/metabolismo , Ribonucleasas/genética , Factores de Transcripción/genética
6.
Cancer Med ; 9(20): 7663-7671, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32815637

RESUMEN

An Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a principal oncogene that plays a pivotal role in EBV-associated malignant tumors including nasopharyngeal cancer (NPC). Recent genomic landscape studies revealed that NPC also contained many genomic mutations, suggesting the role of LMP1 as a driver gene for the induction of these genomic mutations. Nonetheless, its exact mechanism has not been investigated. In this study, we report that LMP1 alters the expression profile of APOBEC3s(A3s), host deaminases that introduce consecutive C-to-U mutations (hypermutation). In vitro, LMP1 induces APOBEC3B (A3B) and 3F(A3F), in a nasopharyngeal cell line, AdAH. Overexpression of LMP1, A3B, or A3F induces mtDNA hypermutation, which is also detectable from NPC specimens. Expression of LMP1 and A3B in NPC was correlated with neck metastasis. These results provide evidence as to which LMP1 induces A3s and mtDNA hypermutation, and how LMP1 facilitates metastasis is also discussed.


Asunto(s)
Desaminasas APOBEC/genética , ADN Mitocondrial , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Mutación , Neoplasias Nasofaríngeas/etiología , Proteínas de la Matriz Viral/metabolismo , Desaminasas APOBEC/metabolismo , Línea Celular Tumoral , Transformación Celular Viral , Susceptibilidad a Enfermedades , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno/genética , Humanos , Inmunohistoquímica , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Estadificación de Neoplasias
7.
Biochem Biophys Res Commun ; 518(1): 26-31, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31400856

RESUMEN

Some APOBEC3 family members have antiviral activity against retroviruses and DNA viruses. Hepatitis B virus (HBV) is a DNA virus that is the major causative factor of severe liver diseases such as cirrhosis and hepatocellular carcinoma. To determine whether APOBEC3 variants in humans have different anti-HBV activities, we evaluated natural variants of APOBEC3C, APOBEC3G, and APOBEC3H using an HBV-replicating cell culture model. Our data demonstrate that the APOBEC3C variant S188I had increased restriction activity and hypermutation frequency against HBV DNA. In contrast, the APOBEC3G variant H186R did not alter the anti-HBV and hypermutation activities. Among APOBEC3H polymorphisms (hap I-VII) and splicing variants (SV-200, SV-183, SV-182, and SV-154), hap II SV-183 showed the strongest restriction activity. These data suggest that the genetic variations in APOBEC3 genes may affect the efficiency of HBV elimination in humans.


Asunto(s)
Desaminasa APOBEC-3G/genética , Aminohidrolasas/genética , Antivirales/metabolismo , Citidina Desaminasa/genética , Variación Genética , Virus de la Hepatitis B/fisiología , Desaminasa APOBEC-3G/metabolismo , Aminohidrolasas/metabolismo , Línea Celular Tumoral , Citidina Desaminasa/metabolismo , ADN Viral/genética , Regulación de la Expresión Génica , Humanos , Hipermutación Somática de Inmunoglobulina/genética , Replicación Viral
8.
PLoS Pathog ; 14(6): e1007124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29928064

RESUMEN

Hepatitis B virus (HBV) is one of the major etiological pathogens for liver cirrhosis and hepatocellular carcinoma. Chronic HBV infection is a key factor in these severe liver diseases. During infection, HBV forms a nuclear viral episome in the form of covalently closed circular DNA (cccDNA). Current therapies are not able to efficiently eliminate cccDNA from infected hepatocytes. cccDNA is a master template for viral replication that is formed by the conversion of its precursor, relaxed circular DNA (rcDNA). However, the host factors critical for cccDNA formation remain to be determined. Here, we assessed whether one potential host factor, flap structure-specific endonuclease 1 (FEN1), is involved in cleavage of the flap-like structure in rcDNA. In a cell culture HBV model (Hep38.7-Tet), expression and activity of FEN1 were reduced by siRNA, shRNA, CRISPR/Cas9-mediated genome editing, and a FEN1 inhibitor. These reductions in FEN1 expression and activity did not affect nucleocapsid DNA (NC-DNA) production, but did reduce cccDNA levels in Hep38.7-Tet cells. Exogenous overexpression of wild-type FEN1 rescued the reduced cccDNA production in FEN1-depleted Hep38.7-Tet cells. Anti-FEN1 immunoprecipitation revealed the binding of FEN1 to HBV DNA. An in vitro FEN activity assay demonstrated cleavage of 5'-flap from a synthesized HBV DNA substrate. Furthermore, cccDNA was generated in vitro when purified rcDNA was incubated with recombinant FEN1, DNA polymerase, and DNA ligase. Importantly, FEN1 was required for the in vitro cccDNA formation assay. These results demonstrate that FEN1 is involved in HBV cccDNA formation in cell culture system, and that FEN1, DNA polymerase, and ligase activities are sufficient to convert rcDNA into cccDNA in vitro.


Asunto(s)
ADN Circular/metabolismo , ADN Viral/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Virus de la Hepatitis B/genética , Hepatitis B/genética , Virión/genética , ADN Circular/genética , ADN Viral/genética , Inhibidores Enzimáticos/farmacología , Endonucleasas de ADN Solapado/antagonistas & inhibidores , Endonucleasas de ADN Solapado/genética , Células Hep G2 , Hepatitis B/enzimología , Hepatitis B/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Virión/enzimología , Replicación Viral
9.
Sci Rep ; 8(1): 9745, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29950685

RESUMEN

Mitochondrial DNA (mtDNA) mutations are found in many types of cancers and suspected to be involved in carcinogenesis, although the mechanism has not been elucidated. In this study, we report that consecutive C-to-T mutations (hypermutations), a unique feature of mutations induced by APOBECs, are found in mtDNA from cervical dysplasia and oropharyngeal cancers. In vitro, we found that APOBEC3A (A3A) and 3B (A3B) expression, as well as mtDNA hypermutation, were induced in a cervical dysplastic cell line W12 when cultured in a differentiating condition. The ectopic expression of A3A or A3B was sufficient to hypermutate mtDNA. Fractionation of W12 cell lysates and immunocytochemical analysis revealed that A3A and A3B could be contained in mitochondrion. These results suggest that mtDNA hypermutation is induced upon keratinocyte differentiation, and shed light on its molecular mechanism, which involves A3s. The possible involvement of mtDNA hypermutations in carcinogenesis is also discussed.


Asunto(s)
Diferenciación Celular/genética , Citidina Desaminasa/genética , ADN Mitocondrial/genética , Queratinocitos/citología , Queratinocitos/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Proteínas/genética , Diferenciación Celular/fisiología , Línea Celular , Femenino , Humanos , Técnicas In Vitro , Mutación/genética , Neoplasias Orofaríngeas/genética , Displasia del Cuello del Útero/genética
10.
Virology ; 510: 281-288, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28779685

RESUMEN

Hepatitis B virus (HBV) is the major cause of liver cirrhosis and hepatocellular carcinoma. After entering a hepatocyte, HBV forms a nuclear viral episome and produces pregenomic (pg) RNA with a stem-loop structure called an epsilon, which acts to signal encapsidation. We previously demonstrated that TGF-ß upregulates activation-induced cytidine deaminase (AID) expression in hepatocytes, which in turn downregulates HBV transcripts by recruiting the RNA exosome complex. The molecular mechanism underlying AID-mediated HBV RNA reduction remains largely unclear. Here we used a pgRNA reporter system having a reporter gene within pgRNA to identify sis- and trans-acting elements in AID-mediated HBV RNA reduction. We found that the epsilon RNA and C-terminus of AID are required for AID-mediated HBV RNA reduction. Importantly, this reduction was reproduced in a hydrodynamic HBV transfection mouse model. The molecular mechanism of AID-mediated HBV RNA reduction is discussed.


Asunto(s)
Citidina Desaminasa/metabolismo , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Hepatocitos/inmunología , Interacciones Huésped-Patógeno , ARN Viral/metabolismo , Replicación Viral , Animales , Hepatocitos/virología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA