Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 44(5): 1589-604, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26436276

RESUMEN

Controlled tile drainage (CTD) regulates water and nutrient export from tile drainage systems. Observations of the effects of CTD imposed en masse at watershed scales are needed to determine the effect on downstream receptors. A paired-watershed approach was used to evaluate the effect of field-to-field CTD at the watershed scale on fluxes and flow-weighted mean concentrations (FWMCs) of N and P during multiple growing seasons. One watershed (467-ha catchment area) was under CTD management (treatment [CTD] watershed); the other (250-ha catchment area) had freely draining or uncontrolled tile drainage (UCTD) (reference [UCTD] watershed). The paired agricultural watersheds are located in eastern Ontario, Canada. Analysis of covariance and paired tests were used to assess daily fluxes and FWMCs during a calibration period when CTD intervention on the treatment watershed was minimal (2005-2006, when only 4-10% of the tile-drained area was under CTD) and a treatment period when the treatment (CTD) watershed had prolific CTD intervention (2007-2011 when 82% of tile drained fields were controlled, occupying >70% of catchment area). Significant linear regression slope changes assessed using ANCOVA ( ≤ 0.1) for daily fluxes from upstream and downstream monitoring sites pooled by calibration and treatment period were -0.06 and -0.20 (stream water) (negative values represent flux declines in CTD watershed), -0.59 and -0.77 (NH-N), -0.14 and -0.15 (NO-N), -1.77 and -2.10 (dissolved reactive P), and -0.28 and 0.45 (total P). Total P results for one site comparison contrasted with other findings likely due to unknown in-stream processes affecting total P loading, not efficacy of CTD. The FWMC results were mixed and inconclusive but suggest physical abatement by CTD is the means by which nutrient fluxes are predominantly reduced at these scales. Overall, our study results indicate that CTD is an effective practice for reducing watershed scale fluxes of stream water, N, and P during the growing season.

2.
J Environ Qual ; 44(2): 629-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26023981

RESUMEN

Controlled tile drainage (CTD) can reduce pollutant loading. The Annualized Agricultural Nonpoint Source model (AnnAGNPS version 5.2) was used to examine changes in growing season discharge, sediment, nitrogen, and phosphorus loads due to CTD for a ∼3900-km agriculturally dominated river basin in Ontario, Canada. Two tile drain depth scenarios were examined in detail to mimic tile drainage control for flat cropland: 600 mm depth (CTD) and 200 mm (CTD) depth below surface. Summed for five growing seasons (CTD), direct runoff, total N, and dissolved N were reduced by 6.6, 3.5, and 13.7%, respectively. However, five seasons of summed total P, dissolved P, and total suspended solid loads increased as a result of CTD by 0.96, 1.6, and 0.23%. The AnnAGNPS results were compared with mass fluxes observed from paired experimental watersheds (250, 470 ha) in the river basin. The "test" experimental watershed was dominated by CTD and the "reference" watershed by free drainage. Notwithstanding environmental/land use differences between the watersheds and basin, comparisons of seasonal observed and predicted discharge reductions were comparable in 100% of respective cases. Nutrient load comparisons were more consistent for dissolved, relative to particulate water quality endpoints. For one season under corn crop production, AnnAGNPS predicted a 55% decrease (CTD) in dissolved N from the basin. AnnAGNPS v. 5.2 treats P transport from a surface pool perspective, which is appropriate for many systems. However, for assessment of tile drainage management practices for relatively flat tile-dominated systems, AnnAGNPS may benefit from consideration of P and particulate transport in the subsurface.

3.
J Environ Manage ; 151: 76-86, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25536300

RESUMEN

Both climate and land use changes can influence water quality and quantity in different ways. Thus, for predicting future water quality and quantity trends, simulations should ideally account for both projected climate and land use changes. In this paper, land use projections and climate change scenarios were integrated with a hydrological model to estimate the relative impact of climate and land use projections on a suite of water quality and quantity endpoints for a Canadian watershed. Climatic time series representing SRES change scenario A2 were generated by downscaling the outputs of the Canadian Regional Climate Model (version 4.1.1) using a combination of quantile-quantile transformation and nearest neighbor search. The SWAT (Soil and Water Assessment Tool) model was used to simulate streamflow, nitrogen and phosphorus loading under different climate and land use scenarios. Results showed that a) climate change will drive up maximum monthly streamflow, nitrate loads, and organic phosphorus loads, while decreasing organic nitrogen and nitrite loads; and b) land use changes were found to drive the same water quality/quantity variables in the same direction as climate change, except for organic nitrogen loads, for which the effects of the two stressors had a reverse impact on loading.


Asunto(s)
Cambio Climático , Nitrógeno/química , Fósforo/química , Ríos , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Canadá , Predicción , Humanos , Modelos Teóricos , Urbanización/tendencias , Calidad del Agua
4.
Yao Xue Xue Bao ; 31(1): 72-4, 1996.
Artículo en Chino | MEDLINE | ID: mdl-8762463

RESUMEN

Carboplatin, an abbreviation for 1, 1-cyclobutanedicarboxylatodiamine platinum (II), is the second generation platinum anticancer drug. The stability of its aqueous solution is of great importance to clinical effects. It has been known that the solution is relatively stable with t1/2 being about three months when kept in dark place, and unstable to light as shown by the rapid change in the UV spectrum. But, the photolytic products remain unidentified. As a knowledge of the products plays an important role in understanding the influence of photolysis of carboplatin on the clinical effects, we have recently studied the photolytical products of aqueous carboplatin solution upon 313 and 254 nm irradiation, and now report our results here.


Asunto(s)
Carboplatino/efectos de la radiación , Fotólisis , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA