Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731676

RESUMEN

Nowadays, consumers are more aware of the effects of their diet on their health, and thus demand natural or minimally processed food products. Therefore, research has focused on processes that assure safe products without jeopardizing their nutritional properties. In this context, this work aimed to evaluate the effects of high-pressure processing (550 MPa/3 min/15 °C, HPP) on a fruit salad (composed of melon juice and pieces of Golden apple and Rocha pear) throughout 35 days of storage at 4 °C. For the physicochemical properties analysed (browning degree, polyphenol oxidase activity, antioxidant activity (ABTS assay), and volatile profile), a freshly made fruit salad was used, while for the microbiological tests (total aerobic mesophiles, and yeast and moulds) spoiled melon juice was added to the fruit salad to increase the microbial load and mimic a challenge test with a high initial microbial load. It was determined that processed samples were more microbiologically stable than raw samples, as HPP enabled a reduction of almost 4-log units of both total aerobic mesophiles and yeasts and moulds, as well as an almost 1.5-fold increase in titratable acidity of the unprocessed samples compared to HPP samples. Regarding browning degree, a significant increase (p < 0.05) was observed in processed versus unprocessed samples (roughly/maximum 68%), while the addition of ascorbic acid decreased the browning of the samples by 29%. For antioxidant activity, there were no significant differences between raw and processed samples during the 35 days of storage. An increase in the activity of polyphenol oxidase immediately after processing (about 150%) was confirmed, which was generally similar or higher during storage compared with the raw samples. Regarding the volatile profile of the product, it was seen that the compounds associated with melon represented the biggest relative percentage and processed samples revealed a decrease in the relative quantity of these compounds compared to unprocessed. Broadly speaking, HPP was shown to be efficient in maintaining the stability and overall quality of the product while assuring microbial safety (by inactivating purposely inoculated microorganisms), which allows for longer shelf life (7 versus 28 days for unprocessed and processed fruit salad, respectively).

2.
Foods ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38231670

RESUMEN

Cold brew coffee (CBC) has gained in popularity due to its distinct sensory experience. However, CBC can pose a risk for bacterial pathogens if not stored properly. High-Pressure Processing (HPP) is a nonthermal technology that can improve the safety of CBC while maintaining its quality. In this study, CBC made from ground roasted coffee grains was processed at 600 MPa for 3 min and stored at 4 or 23 °C for 90 days. The microbiological quality indicators remained stable throughout the study period. Physicochemical and quality parameters, such as pH, total dissolved solids, titratable acidity, color, total phenolic compounds and antioxidant activity, were not significantly affected by HPP. Both unprocessed and HPP CBC samples showed changes in pH, titratable acidity and color stability after 60 days at 23 °C. Unprocessed CBC samples spiked with Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica showed decreased counts, but the pathogens were still detectable after 60 days at 4 °C and after 90 days at 23 °C. HPP achieved a >6-log10 reduction in the species tested, with non-detectable levels for at least 90 days at both storage temperatures. These findings suggest that HPP can effectively control vegetative pathogens and spoilage microorganisms in CBC while preserving its quality attributes.

3.
Food Res Int ; 115: 73-82, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30599984

RESUMEN

Microbial transglutaminase (MTG) is an enzyme largely used in the food industry, mainly to improve food texture. However, many globular proteins show low susceptibility to the action of this enzyme. High-pressure processing (HPP), being able to change protein conformation, may be a useful tool to increase the accessibility of globular proteins to the action of MTG. Nevertheless, HPP conditions need to be carefully optimized to avoid the expected decrease of enzymatic activity observed above certain conditions of pressure (P), treatment time (t) or temperature (T). Pressure inactivation of MTG under different HPP conditions (200-600 MPa; 20-40 °C; 10-30 min) was evaluated employing a face-centered composite design at four different pH values (4-7). The regression models obtained presented high coefficients of determination and high F values, although they could not explain some of the associated variability. At all the pH values tested, the three main factors (P, T, and t) significantly (p < 0.05) affected the activity of MTG. At least 20% of MTG was inactivated when low pressures (200 MPa) were used at pH 4 and 5, whereas a higher pressure above 400 MPa was needed to obtain a similar inactivation at pH 6 or 7. MTG pressure-inactivation followed first-order kinetics under all tested conditions. Inactivation rate constants decreased with increasing pressure at constant temperature and pH 4, with a positive activation volume (Va), while the opposite was verified for the other pH values. Both activation energy (Ea) and Va were dependent on pH, however, at the lower pH values, Ea and Va did not vary significantly with pressure and temperature, respectively. Overall, MTG can be considered relatively resistant to pressure, particularly near its optimal pH.


Asunto(s)
Estabilidad de Enzimas , Viabilidad Microbiana , Presión/efectos adversos , Temperatura , Transglutaminasas/metabolismo , Pruebas de Enzimas , Manipulación de Alimentos/métodos , Industria de Alimentos , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Cinética , Factores de Tiempo
4.
J Environ Manage ; 219: 9-17, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29715638

RESUMEN

Fish canning industry generates large amounts of liquid wastes, which are discarded, after proper treatment to remove the organic load. However, alternative treatment processes may also be designed in order to target the recovery of valuable compounds; with this procedure, these wastewaters are converted into liquid by-products, becoming an additional source of revenue for the company. This study evaluated green and economically sustainable methodologies for the extraction of ω3 lipids from fish canning liquid by-products. Lipids were extracted by processes combining physical and chemical parameters (conventional and pressurized extraction processes), as well as chemical and biological parameters. Furthermore, LCA was applied to evaluate the environmental performance and costs indicators for each process. Results indicated that extraction with high hydrostatic pressure provides the highest amounts of ω3 polyunsaturated fatty acids (3331,5 mg L-1 effluent), apart from presenting the lowest environmental impact and costs. The studied procedures allow to obtain alternative, sustainable and traceable sources of ω3 lipids for further applications in food, pharmaceutical and cosmetic industries. Additionally, such approach contributes towards the organic depuration of canning liquid effluents, therefore reducing the overall waste treatment costs.


Asunto(s)
Ácidos Grasos Omega-3 , Residuos Industriales , Aguas Residuales , Animales , Conservación de los Recursos Naturales , Peces , Lípidos
5.
Crit Rev Food Sci Nutr ; 58(9): 1538-1556, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28071938

RESUMEN

The demand for proteins is rising and alternatives to meat proteins are necessary since animal husbandry is expensive and intensive to the environment. Plant proteins appear as an alternative; however, their techno-functional properties need improvement. High-pressure processing (HPP) is a non-thermal technology that has several applications including the modification of proteins. The application of pressure allows modifying proteins' structure hence allowing to change several of their properties, such as hydration, hydrophobicity, and hydrophilicity. These properties may influence the solubility of proteins and their ability to stabilize emulsions or foams, create aggregates or gels, and their general role in stability and texture of food commodities. Commonly HPP decreases the proteins' solubility yet increasing their surface hydrophobicity exposing sulfhydryl groups, which promotes aggregation or gelation or enhance their ability to stabilize emulsions/foams. However, these effects are not verifiable for all the proteins and are immensely dependent on the type and concentration of the protein, environmental conditions (pH, ionic strength, and co-solutes), and HPP conditions. This review collects and critically discusses the available information on how HPP affects the structure of plant proteins and how their techno-functional properties can be tailored using this approach.


Asunto(s)
Proteínas en la Dieta/química , Tecnología de Alimentos , Proteínas de Plantas/química , Animales , Emulsiones/química , Manipulación de Alimentos , Geles/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Presión Hidrostática , Carne , Estructura Molecular , Concentración Osmolar , Solubilidad , Temperatura
6.
Food Sci Nutr ; 3(6): 467-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26788288

RESUMEN

Hyperbaric storage (HS), storage under pressure at 25°C and 30°C, of a ready-to-eat (RTE) soup was studied and compared with refrigeration. Soup was stored at different time (4 and 8 h), temperature (4°C, 25°C, and 30°C), and pressure (0.1, 100, and 150 MPa) conditions, to compare microbial loads and physicochemical parameters. HS resulted in similar (microbial growth inhibition) to better (microbial inactivation) results compared to refrigeration, leading to equal and lower microbial loads, respectively, at the end of storage. Lower/higher pressure (100 vs. 150 MPa) and shorter/longer storage times (4 vs. 8 h) resulted in more pronounced microbial growth inhibition/microbial inactivation. Aerobic mesophiles showed less susceptibility to HS, compared to Enterobacteriaceae and yeast and molds. HS maintained generally the physicochemical parameters at values similar to refrigeration. Thus, HS with no need for temperature control throughout storage and so basically energetically costless, is a potential alternative to refrigeration.

7.
Food Microbiol ; 46: 515-520, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475323

RESUMEN

In this work, the development of resistance and the recovery of growth after several consecutive cycles of high hydrostatic pressure (HPP) were for the first time evaluated in different strains of Staphylococcus aureus. Three strains of this important and highly resilient to HPP foodborne pathogen were used: a non-enterotoxigenic ATCC 6538 strain, treated with 600 MPa for 30 min at 20 °C, and the toxigenic strains 2153 MA (with enterotoxin A) and 2065 MA (with the enterotoxins A, G and I), treated with 600 MPa for 15 min at 20 °C. After the first treatment, surviving colonies were used to produce new bacterial cultures. This procedure was repeated nine times more for each bacterium or until total inactivation occurred. The inactivation profile of non-enterotoxic strain and the two enterotoxic strains did not change after consecutive cycles, but the toxic strain with three enterotoxins was completely inactivated after the fourth cycle. The three strains did not recover their viability after 14 days. The results indicate that HPP effectively inactivates non-toxigenic and toxigenic strains of S. aureus after a single treatment. The surviving bacteria did not develop resistance after 10 cycles of pressurization and did not recover their viability after 14 days of incubation.


Asunto(s)
Presión Hidrostática , Staphylococcus aureus/química , Staphylococcus aureus/crecimiento & desarrollo , Enterotoxinas/metabolismo , Microbiología de Alimentos , Viabilidad Microbiana , Staphylococcus aureus/clasificación , Staphylococcus aureus/metabolismo
8.
Food Chem ; 147: 209-14, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24206707

RESUMEN

Hyperbaric storage (8h) of melon juice (a highly perishable food) at 25, 30 and 37°C, under pressure at 25-150 MPa was compared with atmospheric pressure storage (0.1 MPa) at the same temperatures and under refrigeration (4°C). Comparatively to the refrigerated condition, hyperbaric storage at 50/75 MPa resulted in similar or lower microbial counts (total aerobic mesophiles, enterobacteriaceae, and yeasts/moulds) while at 100/150 MPa, the counts were lower for all the tested temperatures, indicating in the latter case, in addition to microbial growth inhibition, a microbial inactivation effect. At 25 MPa no microbial inhibition was observed. Physicochemical parameters of all samples stored under pressure (pH, titratable acidity, total soluble solids, browning degree and cloudiness) did not show a clear variation trend with pressure, being the results globally similar to refrigeration storage. These results show the potential of hyperbaric storage, at and above room temperature and with potential energy savings, comparatively to refrigeration.


Asunto(s)
Bebidas/análisis , Cucurbitaceae/química , Almacenamiento de Alimentos/métodos , Extractos Vegetales/análisis , Almacenamiento de Alimentos/instrumentación , Refrigeración , Temperatura
9.
World J Microbiol Biotechnol ; 30(2): 487-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23990070

RESUMEN

The effects of different alkyl chain lengths of ionic liquids 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium chloride, on the catalytic activity, thermal stability and deactivation kinetics of horseradish peroxidase were studied in the temperature range of 45-85 °C. The presence of 1-ethyl- and 1-butyl-ionic liquids up to 25% (w/v) did not affect significantly the enzyme activity at 25 °C, whereas the addition of 1-hexyl-solvent resulted in lower activity of enzyme. Typical biphasic deactivation profiles were obtained and adequately fitted by a bi-exponential equation. When increasing ionic liquids concentration up to 25% (w/v), the second phase of deactivation became more prominent, till leading to apparent first-order kinetics. Occurrence of activity regain, following thermal deactivation was found, reaching up 60-80% of the initial activity, especially in 1-hexyl-3-methylimidazolium chloride. Activity regain was particularly noticeable in the first phase of deactivation. Temperature sensitivity of the Soret band maxima indicated that the enzyme prepared in buffer or 1-hexyl-3-methylimidazolium chloride had similar conformational changes in the haem region, but no correlations were found with activity decrease.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Imidazoles/metabolismo , Líquidos Iónicos/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA