Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 36(6): 613-629.e7, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31761658

RESUMEN

Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva , Interleucina-12/genética , Linfocitos Infiltrantes de Tumor/inmunología , Traslado Adoptivo/métodos , Animales , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Células Dendríticas/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Ratones , Linfocitos T Citotóxicos/inmunología
2.
Cancer Res ; 78(23): 6643-6654, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297531

RESUMEN

: Multiple lines of evidence indicate a critical role of antigen cross-presentation by conventional BATF3-dependent type 1 classical dendritic cells (cDC1) in CD8-mediated antitumor immunity. Flt3L and XCL1, respectively, constitute a key growth/differentiation factor and a potent and specific chemoattractant for cDC1. To exploit their antitumor functions in local immunotherapy, we prepared Semliki Forest Virus (SFV)-based vectors encoding XCL1 and soluble Flt3L (sFlt3L). These vectors readily conferred transgene expression to the tumor cells in culture and when engrafted as subcutaneous mouse tumor models. In syngeneic mice, intratumoral injection of SFV-XCL1-sFlt3L (SFV-XF) delayed progression of MC38- and B16-derived tumors. Therapeutic activity was observed and exerted additive effects in combination with anti-PD-1, anti-CD137, or CTLA-4 immunostimulatory mAbs. Therapeutic effects were abolished by CD8ß T-cell depletion and were enhanced by CD4 T-cell depletion, but not by T regulatory cell predepletion with anti-CD25 mAb. Antitumor effects were also abolished in BATF3- and IFNAR-deficient mice. In B16-OVA tumors, SFV-XF increased the number of infiltrating CD8 T cells, including those recognizing OVA. Consistently, following the intratumoral SFV-XF treatment courses, we observed increased BATF3-dependent cDC1 among B16-OVA tumor-infiltrating leukocytes. Such an intratumoral increase was not seen in MC38-derived tumors, but both resident and migratory cDC1 were boosted in SFV-XF-treated MC38 tumor-draining lymph nodes. In conclusion, viral gene transfer of sFlt3L and XCL1 is feasible, safe, and biologically active in mice, exerting antitumor effects that can be potentiated by CD4 T-cell depletion. SIGNIFICANCE: These findings demonstrate that transgenic expression of sFLT3L and XCL1 in tumor cells mediates cross-priming of, and elicits potent antitumor activity from, CD8 T lymphocytes, particularly in combination with CD4 T-cell depletion.


Asunto(s)
Quimiocinas C/genética , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Vectores Genéticos/genética , Proteínas de la Membrana/genética , Virus de los Bosques Semliki/genética , Linfocitos T/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia , Ratones , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología
3.
Front Neuroanat ; 10: 27, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047347

RESUMEN

We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.

4.
Cell Mol Life Sci ; 73(20): 3897-916, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27117550

RESUMEN

Alphavirus budding is driven by interactions between nucleocapsids assembled in the cytoplasm and envelope proteins present at the plasma membrane. So far, the expression of capsid and envelope proteins in infected cells has been considered an absolute requirement for alphavirus budding and propagation. In the present study, we show that Semliki Forest virus and Sindbis virus lacking the capsid gene can propagate in mammalian and insect cells. This propagation is mediated by the release of infectious microvesicles (iMVs), which are pleomorphic and have a larger size and density than wild-type virus. iMVs, which contain viral RNA inside and viral envelope proteins on their surface, are released at the plasma membrane and infect cells using the endocytic pathway in a similar way to wild-type virus. iMVs are not pathogenic in immunocompetent mice when injected intravenously, but can infect different organs like lungs and heart. Finally, we also show that alphavirus genomes without capsid can mediate the propagation of heterologous genes, making these vectors potentially interesting for gene therapy or vaccination studies. The minimalist infectious system described in this study shows that a self-replicating RNA able to express membrane proteins with binding and fusion properties is able to propagate, providing some insights into virus evolution.


Asunto(s)
Alphavirus/patogenicidad , Cápside/metabolismo , Membrana Celular/virología , Micropartículas Derivadas de Células/virología , Alphavirus/genética , Animales , Fusión Celular , Línea Celular , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Femenino , Genoma Viral , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones Endogámicos C57BL , Pruebas de Neutralización , ARN Viral/metabolismo , Virus de los Bosques Semliki/patogenicidad , Transfección , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo
5.
Oncoimmunology ; 5(1): e1062967, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26942078

RESUMEN

Hypoxia is a common feature in solid tumors that has been implicated in immune evasion. Previous studies from our group have shown that hypoxia upregulates the co-stimulatory receptor CD137 on activated T lymphocytes and on vascular endothelial cells. In this study, we show that exposure of mouse and human tumor cell lines to hypoxic conditions (1% O2) promotes CD137 transcription. However, the resulting mRNA is predominantly an alternatively spliced form that encodes for a soluble variant, lacking the transmembrane domain. Accordingly, soluble CD137 (sCD137) is detectable by ELISA in the supernatant of hypoxia-exposed cell lines and in the serum of tumor-bearing mice. sCD137, as secreted by tumor cells, is able to bind to CD137-Ligand (CD137L). Our studies on primed T lymphocytes in co-culture with stable transfectants for CD137L demonstrate that tumor-secreted sCD137 prevents co-stimulation of T lymphocytes. Such an effect results from preventing the interaction of CD137L with the transmembrane forms of CD137 expressed on T lymphocytes undergoing activation. Indeed, silencing CD137 with shRNA renders more immunogenic tumor-cell variants upon inoculation to immunocompetent mice but which readily grafted on immunodeficient or CD8+ T-cell-depleted mice. These mechanisms are interpreted as a molecular strategy deployed by tumors to repress lymphocyte co-stimulation via CD137/CD137L.

6.
Cancer Discov ; 6(1): 71-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493961

RESUMEN

UNLABELLED: Weak and ineffective antitumor cytotoxic T lymphocyte (CTL) responses can be rescued by immunomodulatory mAbs targeting PD-1 or CD137. Using Batf3(-/-) mice, which are defective for cross-presentation of cell-associated antigens, we show that BATF3-dependent dendritic cells (DC) are essential for the response to therapy with anti-CD137 or anti-PD-1 mAbs. Batf3(-/-) mice failed to prime an endogenous CTL-mediated immune response toward tumor-associated antigens, including neoantigens. As a result, the immunomodulatory mAbs could not amplify any therapeutically functional immune response in these mice. Moreover, administration of systemic sFLT3L and local poly-ICLC enhanced DC-mediated cross-priming and synergized with anti-CD137- and anti-PD-1-mediated immunostimulation in tumor therapy against B16-ovalbumin-derived melanomas, whereas this function was lost in Batf3(-/-) mice. These experiments show that cross-priming of tumor antigens by FLT3L- and BATF3-dependent DCs is crucial to the efficacy of immunostimulatory mAbs and represents a very attractive point of intervention to enhance their clinical antitumor effects. SIGNIFICANCE: Immunotherapy with immunostimulatory mAbs is currently achieving durable clinical responses in different types of cancer. We show that cross-priming of tumor antigens by BATF3-dependent DCs is a key limiting factor that can be exploited to enhance the antitumor efficacy of anti-PD-1 and anti-CD137 immunostimulatory mAbs.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Dendríticas/inmunología , Melanoma Experimental/terapia , Proteínas Represoras/genética , Animales , Anticuerpos Monoclonales/uso terapéutico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Humanos , Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Represoras/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
7.
Mol Cancer ; 14: 210, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26671477

RESUMEN

BACKGROUND: The limited efficacy of current treatments against pancreatic cancer has prompted the search of new alternatives such as virotherapy. Activation of the immune response against cancer cells is emerging as one of the main mechanisms of action of oncolytic viruses (OV). Direct oncolysis releases tumor antigens, and viral replication within the tumor microenvironment is a potent danger signal. Arming OV with immunostimulatory transgenes further enhances their therapeutic effect. However, standard virotherapy protocols do not take full advantage of OV as cancer vaccines because repeated viral administrations may polarize immune responses against strong viral antigens, and the rapid onset of neutralizing antibodies limits the efficacy of redosing. An alternative paradigm based on sequential combination of antigenically distinct OV has been recently proposed. METHODS: We have developed a protocol consisting of sequential intratumor administrations of new Adenovirus (Ad) and Newcastle Disease Virus (NDV)-based OV encoding the immunostimulatory cytokine oncostatin M (OSM). Transgene expression, toxicity and antitumor effect were evaluated using an aggressive orthotopic pancreatic cancer model in Syrian hamsters, which are sensitive to OSM and permissive for replication of both OVs. RESULTS: NDV-OSM was more cytolytic, whereas Ad-OSM caused higher OSM expression in vivo. Both viruses achieved only a marginal antitumor effect in monotherapy. In addition, strong secretion of OSM in serum limited the maximal tolerated dose of Ad-OSM. In contrast, moderate doses of Ad-OSM followed one week later by NDV-OSM were safe, showed a significant antitumor effect and stimulated immune responses against cancer cells. Similar efficacy was observed when the order of virus administrations was reversed. CONCLUSION: Sequential administration of oncolytic Ad and NDV encoding OSM is a promising approach against pancreatic cancer.


Asunto(s)
Viroterapia Oncolítica/métodos , Oncostatina M/biosíntesis , Neoplasias Pancreáticas/terapia , Animales , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Cricetinae , Humanos , Mesocricetus , Trasplante de Neoplasias , Virus Oncolíticos/genética , Oncostatina M/genética , Replicación Viral
8.
Proc Natl Acad Sci U S A ; 112(24): 7551-6, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26034288

RESUMEN

Cancer immunotherapy is undergoing significant progress due to recent clinical successes by refined adoptive T-cell transfer and immunostimulatory monoclonal Ab (mAbs). B16F10-derived OVA-expressing mouse melanomas resist curative immunotherapy with either adoptive transfer of activated anti-OVA OT1 CTLs or agonist anti-CD137 (4-1BB) mAb. However, when acting in synergistic combination, these treatments consistently achieve tumor eradication. Tumor-infiltrating lymphocytes that accomplish tumor rejection exhibit enhanced effector functions in both transferred OT-1 and endogenous cytotoxic T lymphocytes (CTLs). This is consistent with higher levels of expression of eomesodermin in transferred and endogenous CTLs and with intravital live-cell two-photon microscopy evidence for more efficacious CTL-mediated tumor cell killing. Anti-CD137 mAb treatment resulted in prolonged intratumor persistence of the OT1 CTL-effector cells and improved function with focused and confined interaction kinetics of OT-1 CTL with target cells and increased apoptosis induction lasting up to six days postadoptive transfer. The synergy of adoptive T-cell therapy and agonist anti-CD137 mAb thus results from in vivo enhancement and sustainment of effector functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/terapia , Linfocitos T Citotóxicos/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Proteínas Aviares/genética , Línea Celular Tumoral , Terapia Combinada , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/genética , Proteínas de Dominio T Box/metabolismo , Microambiente Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/deficiencia , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
9.
Cancer Immunol Res ; 3(5): 449-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691326

RESUMEN

Virotherapy and checkpoint inhibitors can be combined for the treatment of cancer with complementarity and potential for synergistic effects. We have developed a cytolytic but nonreplicative viral vector system based on Semliki Forest virus that encodes IL12 (SFV-IL12). Following direct intratumoral injection, infected cells release transgenic IL12, die, and elicit an inflammatory response triggered by both abundantly copied viral RNA and IL12. In difficult-to-treat mouse cancer models, such as those derived from MC38 and bilateral B16-OVA, SFV-IL12 synergized with an anti-PD-1 monoclonal antibody (mAb) to induce tumor regression and prolong survival. Similar synergistic effects were attained upon PD-L1 blockade. Combined SFV-IL12 + anti-PD-1 mAb treatment only marginally increased the elicited cytotoxic T-lymphocyte response over SFV-IL12 as a single agent, at least when measured by in vivo killing assays. In contrast, we observed that SFV-IL12 treatment induced expression of PD-L1 on tumor cells in an IFNγ-dependent fashion. PD-L1-mediated adaptive resistance thereby provides a mechanistic explanation of the observed synergistic effects achieved by the SFV-IL12 + anti-PD-1 mAb combination.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Interleucina-12/genética , Neoplasias/terapia , Viroterapia Oncolítica , Receptor de Muerte Celular Programada 1/inmunología , Virus de los Bosques Semliki/genética , Animales , Línea Celular Tumoral , Femenino , Vectores Genéticos , Interleucina-12/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Bazo/citología
10.
Cancer Res ; 75(3): 497-507, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25527611

RESUMEN

Host responses are increasingly considered important for the efficacious response to experimental cancer therapies that employ viral vectors, but little is known about the specific nature of host responses required. In this study, we investigated the role of host type I interferons (IFN-I) in the efficacy of virally delivered therapeutic genes. Specifically, we used a Semliki Forest virus encoding IL12 (SFV-IL12) based on its promise as an RNA viral vector for cancer treatment. Intratumoral injection of SFV-IL12 induced production of IFN-I as detected in serum. IFN-I production was abolished in mice deficient for the IFNß transcriptional regulator IPS-1 and partially attenuated in mice deficient for the IFNß signaling protein TRIF. Use of bone marrow chimeric hosts established that both hematopoietic and stromal cells were involved in IFN-I production. Macrophages, plasmacytoid, and conventional dendritic cells were each implicated based on cell depletion experiments. Further, mice deficient in the IFN-I receptor (IFNAR) abolished the therapeutic activity of SFV-IL12, as did a specific antibody-mediated blockade of IFNAR signaling. Reduced efficacy was not caused by an impairment in IL12 expression, because IFNAR-deficient mice expressed the viral IL12 transgene even more strongly than wild-type (WT) hosts. Chimeric host analysis for the IFNAR involvement established a strict requirement in hematopoietic cells. Notably, although tumor-specific CD8 T lymphocytes expanded robustly after intratumoral injection of WT mice with SFV-IL12, this did not occur in mice where IFNAR was inactivated genetically or pharmacologically. Overall, our results argued that the antitumor efficacy of a virally based transgene therapeutic relied strongly on a vector-induced IFN-I response, revealing an unexpected mechanism of action that is relevant to a broad array of current translational products in cancer research.


Asunto(s)
Antineoplásicos/química , Terapia Genética/métodos , Vectores Genéticos , Interleucina-12/metabolismo , Animales , Linfocitos T CD8-positivos/citología , Línea Celular Tumoral , Cruzamientos Genéticos , Células Dendríticas/citología , Femenino , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Inmunoterapia , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Viral/genética , Proteínas Recombinantes/metabolismo , Transgenes
11.
J Transl Med ; 12: 202, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25060862

RESUMEN

New approaches to generate effective anticancer responses by either inducing immune responses or inhibiting immunosuppression are under development to improve efficacy in patients. On March 4-5th, 2014, a symposium was held in Pamplona, Spain, to report the new strategies showing preclinical and clinical results regarding translational research efforts on the topic. Participants interacted through oral presentations of 15 speakers and further discussions on topics that included novel therapeutic agents for cancer immunotherapy, viral vectors and interferon-based approaches, experimental tumor imaging and immunostimulatory monoclonal antibodies. Promising agents to target cancer cells and therapeutic approaches that are under translation from bench to patients were presented.


Asunto(s)
Inmunoterapia , Laboratorios , Neoplasias/inmunología , Neoplasias/terapia , Investigación Biomédica Traslacional , Anticuerpos Monoclonales/inmunología , Diagnóstico por Imagen , Vectores Genéticos/metabolismo , Humanos , Interferones/metabolismo , España , Universidades
12.
Clin Cancer Res ; 19(20): 5546-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24004672

RESUMEN

Immunotherapies often permit combinations to increase efficacy. Two approaches are currently leading our field: adoptive therapy with T cells transfected with chimeric antigen receptors and monoclonal antibodies blocking the PD-1/PD-L1 (B7-H1) axis. In this issue of Clinical Cancer Research, preclinical evidence for a synergistic combination of such approaches is reported.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias/genética , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Humanos
13.
Oncoimmunology ; 2(6): e24499, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23894709

RESUMEN

Do cancer patients responding to immunotherapy have immunological profiles that influence the therapeutic outcome, or do they develop efficient antitumor responses only upon immunotherapy? We came across this "chicken or the egg" dilemma when treating secondary liver tumors with Semliki Forest viruses expressing interleukin-12. In our system, the "egg," that is, the pre-treatment immunological profile, seemed to make the difference. The properties of an effective antitumor response were also defined.

14.
J Immunol ; 190(6): 2994-3004, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23401594

RESUMEN

Semliki Forest virus vectors expressing IL-12 (SFV-IL-12) were shown to induce potent antitumor responses against s.c. MC38 colon adenocarcinomas in immunocompetent mice. However, when MC38 tumors were implanted in liver, where colon tumors usually metastasize, SFV-IL-12 efficacy was significantly reduced. We reasoned that characterization of immune responses against intrahepatic tumors in responder and nonresponder animals could provide useful information for designing more potent antitumor strategies. Remarkably, SFV-IL-12 induced a high percentage of circulating tumor-specific CD8 T cells in all treated animals. Depletion studies showed that these cells were essential for SFV-IL-12 antitumor activity. However, in comparison with nonresponders, tumor-specific cells from responder mice acquired an effector-like phenotype significantly earlier, were recruited more efficiently to the liver, and, importantly, persisted for a longer period of time. All treated mice had high levels of functional specific CD8 T cells at 8 d posttreatment reflected by both in vivo killing and IFN-γ-production assays, but responder animals showed a more avid and persistent IFN-γ response. Interestingly, differences in immune responses between responders and nonresponders seemed to correlate with the immune status of the animals before treatment and were not due to the treatment itself. Mice that rejected tumors were protected against tumor rechallenge, indicating that sustained memory responses are required for an efficacious therapy. Interestingly, tumor-specific CD8 T cells of responder animals showed upregulation of IL-15Rα expression compared with nonresponders. These results suggest that SFV-IL-12 therapy could benefit from the use of strategies that could either upregulate IL-15Rα expression or activate this receptor.


Asunto(s)
Interleucina-12/biosíntesis , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/prevención & control , Virus de los Bosques Semliki/inmunología , Virus de los Bosques Semliki/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/prevención & control , Adenocarcinoma/virología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/prevención & control , Infecciones por Alphavirus/virología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Cultivadas , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/virología , Cricetinae , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Vectores Genéticos/metabolismo , Interleucina-12/genética , Neoplasias Hepáticas Experimentales/virología , Ratones , Ratones Endogámicos C57BL
15.
Oncoimmunology ; 1(8): 1344-1354, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23243597

RESUMEN

Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies.

16.
PLoS One ; 7(11): e48466, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23155384

RESUMEN

Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).


Asunto(s)
Flagelina/inmunología , Marinobacter/inmunología , Salmonella typhimurium/inmunología , Receptor Toll-Like 5/metabolismo , Inmunidad Adaptativa , Animales , Femenino , Flagelina/metabolismo , Marinobacter/metabolismo , Ratones , Ratones Endogámicos BALB C , Salmonella typhimurium/metabolismo
17.
Mol Ther ; 20(9): 1664-75, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22735380

RESUMEN

Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8(ß)(+) T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8(+) T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Carcinoma/terapia , Interleucina-12/inmunología , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Virus de los Bosques Semliki/inmunología , Neoplasias Cutáneas/terapia , Animales , Anticuerpos Monoclonales/administración & dosificación , Apoptosis/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma/inmunología , Carcinoma/mortalidad , Línea Celular Tumoral , Cricetinae , Expresión Génica/efectos de los fármacos , Inmunidad Celular/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Inmunoterapia/métodos , Inyecciones Intralesiones , Inyecciones Intravenosas , Interleucina-12/administración & dosificación , Interleucina-12/genética , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Melanoma Experimental/inmunología , Melanoma Experimental/mortalidad , Ratones , Virus de los Bosques Semliki/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Tasa de Supervivencia , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
18.
J Virol ; 86(3): 1758-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22114329

RESUMEN

The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Fiebre Porcina Africana/metabolismo , Colesterol/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Chlorocebus aethiops , Porcinos , Células Vero
19.
Recent Pat Biotechnol ; 5(3): 212-26, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22360469

RESUMEN

Alphaviruses contain a single-strand RNA genome that can be modified to express heterologous genes at high levels. Alphavirus vectors can be packaged within viral particles (VPs) or used as DNA/RNA layered systems. The broad tropism and high expression levels of alphavirus vectors have made them very attractive for applications like recombinant protein expression, vaccination or gene therapy. Expression mediated by alphavirus vectors is generally transient due to induction of apoptosis. However, during the last years several non-cytopathic mutations have been identified within the replicase sequence of different alphaviruses, allowing prolonged protein expression in culture cells. Some of these mutants, which have been patented, have allowed the generation of stable cell lines able to express recombinant proteins for extended periods of time in a constitutive or inducible manner. Production of alphavirus VPs usually requires cotransfection of cells with vector and helper RNAs providing viral structural proteins in trans. During this process full-length wild type (wt) genomes can be generated through recombination between different RNAs. Several new strategies to reduce wt virus generation during packaging, optimize VP production, increase packaging capacity, and provide VPs with specific targeting have been recently patented. Finally, hybrid vectors between alphavirus and other types of viruses have led to a number of patents with applications in vaccination, cancer therapy or retrovirus production.


Asunto(s)
Alphavirus/genética , Vectores Genéticos/metabolismo , Proteínas Recombinantes/biosíntesis , Alphavirus/metabolismo , Animales , Patentes como Asunto , Proteínas Recombinantes/genética , Replicación Viral
20.
Virus Res ; 153(2): 179-96, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20692305

RESUMEN

Alphaviruses contain a single strand RNA genome that can be easily modified to express heterologous genes at very high levels in a broad variety of cells, including tumor cells. Alphavirus vectors can be used as viral particles containing a packaged vector RNA, or directly as nucleic acids in the form of RNA or DNA. In the latter case alphavirus RNA is cloned within a DNA vector downstream of a eukaryotic promoter. Expression mediated by these vectors is generally transient due to the induction of apoptosis. The high expression levels, induction of apoptosis, and activation of type I IFN response are the key features that have made alphavirus vectors very attractive for cancer treatment and vaccination. Alphavirus vectors have been successfully used as vaccines to induce protective and therapeutic immune responses against many tumor-associated antigens in animal models of mastocytoma, melanoma, mammary, prostate, and virally induced tumors. Alphavirus vectors have also shown a high antitumoral efficacy by expressing antitumoral molecules in tumor cells, which include cytokines, antiangiogenic factors or toxic proteins. In these studies induction of apoptosis in tumor cells contributed to the antitumoral efficacy by the release of tumor antigens that can be uptaken by antigen presenting cells, enhancing immune responses against tumors. The potential use of alphaviruses as oncolytic agents has also been evaluated for avirulent strains of Semliki Forest virus and Sindbis virus. The fact that this latter virus has a natural tropism for tumor cells has led to many studies in which this vector was able to reach metastatic tumors when administered systemically. Other "artificial" strategies to increase the tropism of alphavirus for tumors have also been evaluated and will be discussed.


Asunto(s)
Alphavirus/genética , Vectores Genéticos , Neoplasias/terapia , Animales , Apoptosis , Femenino , Terapia Genética/métodos , Humanos , Interferón Tipo I/inmunología , Masculino , Neoplasias Mamarias Animales/terapia , Mastocitoma/terapia , Melanoma/terapia , Modelos Animales , Neoplasias/inmunología , Neoplasias/virología , Virus Oncolíticos , Neoplasias de la Próstata/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...