Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(28): 24282-24289, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28654237

RESUMEN

Energy-transfer reactions are the key for living open systems, biological chemical networking, and the development of life-inspired nanoscale machineries. It is a challenge to find simple reliable synthetic chemical networks providing a localization of the time-dependent flux of matter. In this paper, we look to photocatalytic reaction on TiO2 from different angles, focusing on proton generation and introducing a reliable, minimal-reagent-consuming, stable inorganic light-promoted proton pump. Localized illumination was applied to a TiO2 surface in solution for reversible spatially controlled "inorganic photoproton" isometric cycling, the lateral separation of water-splitting reactions. The proton flux is pumped during the irradiation of the surface of TiO2 and dynamically maintained at the irradiated surface area in the absence of any membrane or predetermined material structure. Moreover, we spatially predetermine a transient acidic pH value on the TiO2 surface in the irradiated area with the feedback-driven generation of a base as deactivator. Importantly we describe how to effectively monitor the spatial localization of the process by the in situ scanning ion-selective electrode technique (SIET) measurements for pH and the scanning vibrating electrode technique (SVET) for local photoelectrochemical studies without additional pH-sensitive dye markers. This work shows the great potential for time- and space-resolved water-splitting reactions for following the investigation of pH-stimulated processes in open systems with their flexible localization on a surface.

2.
Anal Chem ; 87(13): 6487-92, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26057348

RESUMEN

The fabrication of an all-diamond microprobe is demonstrated for the first time. This ME (microelectrode) assembly consists of an inner boron doped diamond (BDD) layer and an outer undoped diamond layer. Both layers were grown on a sharp tungsten tip by chemical vapor deposition (CVD) in a stepwise manner within a single deposition run. BDD is a material with proven potential as an electrochemical sensor. Undoped CVD diamond is an insulating material with superior chemical stability in comparison to conventional insulators. Focused ion beam (FIB) cutting of the apex of the ME was used to expose an electroactive BDD disk. By cyclic voltammetry, the redox reaction of ferrocenemethanol was shown to take place at the BDD microdisk surface. In order to ensure that the outer layer was nonelectrically conductive, a diffusion barrier for boron atoms was established seeking the formation of boron-hydrogen complexes at the interface between the doped and the undoped diamond layers. The applicability of the microelectrodes in localized corrosion was demonstrated by scanning amperometric measurements of oxygen distribution above an Al-Cu-CFRP (Carbon Fiber Reinforced Polymer) galvanic corrosion cell.


Asunto(s)
Diamante , Técnicas Electroquímicas/instrumentación , Microelectrodos , Sondas Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...