Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 982127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061204

RESUMEN

Ciliopathies are a class of inherited severe human disorders that occur due to defective formation or function of cilia. The RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein1-like) gene encodes for a ciliary protein involved in regulating cilia formation and function. Mutations in RPGRIP1L cause ciliopathies associated with severe embryonic defects, such as Meckel-Gruber Syndrome (MKS). Here we report RPGRIP1L mutation analysis in a family diagnosed with MKS. The clinical manifestations of the fetus included thoraco-lumbar open neural tube defect with associated Chiari type II malformation and hydrocephalus, bilateral club feet, and single right kidney/ureter. Analysis of the parental DNA samples revealed that the father carried a previously reported mutation R1236C/+ whereas the mother had a novel splice site mutation IVS6+1 G > A/+ in RPGRIP1L. The splice site mutation resulted in the exclusion of in-frame exon 6 of RPGRIP1L (RPGRIP1L-∆Ex6) but expressed a stable protein in fibroblasts derived from the parents' skin biopsies. The GFP-RPGRIP1L-∆Ex6 mutant protein exhibited relatively reduced ciliary localization in transiently-transfected cultured RPE-1 cells. Taken together, this study identifies a novel RPGRIP1L variant RPGRIP1L-∆Ex6, which in combination with RPGRIP1L-R1236C is associated with MKS. We also suggest that the deletion of exon 6 of RPGRIP1L leads to reduced ciliary localization of RPGRIP1L, indicating a plausible mechanism of associated disease.

2.
Ann Hepatol ; 19(5): 497-506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32673649

RESUMEN

INTRODUCTION AND OBJECTIVES: Curcumin, a polyphenol, is a natural compound that has been widely studied as a hepatoprotector; however, only a few studies have examined its ability to reduce fibrosis in previously established cirrhosis. The objective of this study was to investigate whether curcumin could reduce carbon tetrachloride (CCl4)-induced fibrosis and if so, to determine the action mechanisms involved in the reduction process. MATERIALS AND METHODS: CCl4 was administered to male Wistar rats (400 mg/kg, three times a week, i. p.) for 12 weeks; curcumin (100 mg/kg body weight twice per day, p. o.) was administered from week 9-12 of CCl4 treatment. Biochemical markers of hepatic injury and oxidative stress were evaluated. Hematoxylin and eosin, Masson's trichrome stains, transmission electron microscopy; immunohistochemistry, and zymography assays were carried out. Moreover, Smad3 and α-SMA mRNA and protein levels were studied. Western blotting by TGF-ß, CTGF, Col-I, MMP-13, NF-κB, IL-1, IL-10, Smad7, pSmad3, and pJNK proteins was developed. RESULTS AND CONCLUSIONS: Curcumin reduced liver damage, oxidative stress, fibrosis, and restored normal activity of MMP-9 and MMP-2. Besides, curcumin restored NF-κB, IL-1, IL-10, TGF-ß, CTGF, Col-I, MMP-13, and Smad7 protein levels. On the other hand, curcumin decreased JNK and Smad3 phosphorylation. Furthermore, curcumin treatment decreased α-SMA and Smad3 protein and mRNA levels. Curcumin normalized GSH, and NF-κB, JNK-Smad3, and TGF-ß-Smad3 pathways, leading to a decrement in activated hepatic stellate cells, thereby producing its antifibrotic effects.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Curcumina/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática Experimental/prevención & control , Hígado/efectos de los fármacos , Sustancias Protectoras/farmacología , Proteína smad3/metabolismo , Proteína smad7/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/ultraestructura , Hígado/metabolismo , Hígado/ultraestructura , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas Wistar , Transducción de Señal
3.
Eur J Pharmacol ; 865: 172730, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618621

RESUMEN

There is no effective treatment for hepatic fibrosis. Previously, we demonstrated that naringenin possesses the ability to prevent experimental chronic liver damage. Therefore, the objective of this work was to investigate whether naringenin could reverse carbon tetrachloride (CCl4)-induced fibrosis in rats and, if so, to search for the mechanisms involved. CCl4 was given to male Wistar rats (400 mg/kg, three times per week, i. p.) for 12 weeks; naringenin (100 mg/kg twice per day, p. o.) was administered from weeks 9-12 of the CCl4 treatment. Liver damage and oxidative stress markers were measured. Masson's trichrome, hematoxylin-eosin staining and immunohistochemistry were performed. Zymography assays for MMP-9 and MMP-2 were carried out. TGF-ß, CTGF, Col-I, MMP-13, NF-κB, IL-1ß, IL-10, Smad7, pSmad3 and pJNK protein levels were determined by western blotting. In addition, α-SMA and Smad3 protein and mRNA levels were studied. Naringenin reversed liver damage, biochemical and oxidative stress marker elevation, and fibrosis and restored normal MMP-9 and MMP-2 activity. The flavonoid also preserved NF-κB, IL-1ß, IL-10, TGF-ß, CTGF, Col-I, MMP-13 and Smad7 protein levels. Moreover, naringenin decreased JNK activation and Smad3 phosphorylation in the linker region. Finally, α-SMA and Smad3 protein and mRNA levels were reduced by naringenin administration. The results of this study demonstrate that naringenin blocks oxidative stress, inflammation and the TGF-ß-Smad3 and JNK-Smad3 pathways, thereby carrying out its antifibrotic effects and making it a good candidate to treat human fibrosis, as previously demonstrated in toxicological and clinical studies.


Asunto(s)
Progresión de la Enfermedad , Flavanonas/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/patología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Colágeno/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Flavanonas/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Masculino , Proteolisis/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
4.
J Cell Physiol ; 233(5): 4166-4182, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29030970

RESUMEN

GAS1 is a pleiotropic protein that has been investigated because of its ability to induce cell proliferation, cell arrest, and apoptosis, depending on the cellular or the physiological context in which it is expressed. At this point, we have information about the molecular mechanisms by which GAS1 induces proliferation and apoptosis; but very few studies have been focused on elucidating the mechanisms by which GAS1 induces cell arrest. With the aim of expanding our knowledge on this subject, we first focused our research on finding proteins that were preferentially expressed in cells arrested by serum deprivation. By using a proteomics approach and mass spectrometry analysis, we identified 17 proteins in the 2-DE protein profile of serum deprived NIH3T3 cells. Among them, Annexin A1 (Anxa1), Annexin A2 (Anxa2), dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B), and Eukaryotic translation initiation factor 3, F (eIf3f) were upregulated at transcriptional the level in proliferative NIH3T3 cells. Moreover, we demonstrated that Anxa1, Anxa2, and Dyrk1b are upregulated at both the transcriptional and translational levels by the overexpression of GAS1. Thus, our results suggest that the upregulation of Anxa1, Anxa2, and Dyrk1b could be related to the ability of GAS1 to induce cell arrest and maintain cell viability. Finally, we provided further evidence showing that GAS1 through Dyrk 1B leads not only to the arrest of NIH3T3 cells but also maintains cell viability.


Asunto(s)
Anexina A1/genética , Anexina A2/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Factor 3 de Iniciación Eucariótica/genética , Proteínas Ligadas a GPI/genética , Regulación de la Expresión Génica/genética , Humanos , Ratones , Células 3T3 NIH , Activación Transcripcional , Quinasas DyrK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...