Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(9): 1127-1137, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37024727

RESUMEN

The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.


Asunto(s)
Citocinas , Interleucina-4 , Animales , Transducción de Señal
2.
Adv Mater ; 35(11): e2208556, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36493355

RESUMEN

De novo designed protein switches are powerful tools to specifically and sensitively detect diverse targets with simple chemiluminescent readouts. Finding an appropriate material host for de novo designed protein switches without altering their thermodynamics while preserving their intrinsic stability over time would enable the development of a variety of sensing formats to monitor exposure to pathogens, toxins, and for disease diagnosis. Here, a de novo protein-biopolymer hybrid that maintains the detection capabilities induced by the conformational change of the incorporated proteins in response to analytes of interest is generated in multiple, shelf-stable material formats without the need of refrigerated storage conditions. A set of functional demonstrator devices including personal protective equipment such as masks and laboratory gloves, free-standing films, air quality monitors, and wearable devices is presented to illustrate the versatility of the approach. Such formats are designed to be responsive to human epidermal growth factor receptor (HER2), anti-hepatitis B (HBV) antibodies, Botulinum neurotoxin B (BoNT/B), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This combination of form and function offers wide opportunities for ubiquitous sensing in multiple environments by enabling a large class of bio-responsive interfaces of broad utility.


Asunto(s)
COVID-19 , Dispositivos Electrónicos Vestibles , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Biomarcadores
3.
Nat Biotechnol ; 41(4): 532-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36316485

RESUMEN

The therapeutic potential of recombinant cytokines has been limited by the severe side effects of systemic administration. We describe a strategy to reduce the dose-limiting toxicities of monomeric cytokines by designing two components that require colocalization for activity and that can be independently targeted to restrict activity to cells expressing two surface markers. We demonstrate the approach with a previously designed mimetic of cytokines interleukin-2 and interleukin-15-Neoleukin-2/15 (Neo-2/15)-both for trans-activating immune cells surrounding targeted tumor cells and for cis-activating directly targeted immune cells. In trans-activation mode, tumor antigen targeting of the two components enhanced antitumor activity and attenuated toxicity compared with systemic treatment in syngeneic mouse melanoma models. In cis-activation mode, immune cell targeting of the two components selectively expanded CD8+ T cells in a syngeneic mouse melanoma model and promoted chimeric antigen receptor T cell activation in a lymphoma xenograft model, enhancing antitumor efficacy in both cases.


Asunto(s)
Citocinas , Melanoma , Ratones , Animales , Humanos , Interleucina-2/uso terapéutico , Linfocitos T CD8-positivos , Inmunoterapia , Melanoma/tratamiento farmacológico
4.
Nat Biotechnol ; 40(9): 1336-1340, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35484405

RESUMEN

We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/genética , COVID-19/diagnóstico , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
5.
BMC Biotechnol ; 22(1): 12, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331211

RESUMEN

BACKGROUND: CRISPR-based programmable transcriptional activators (PTAs) are used in plants for rewiring gene networks. Better tuning of their activity in a time and dose-dependent manner should allow precise control of gene expression. Here, we report the optimization of a Copper Inducible system called CI-switch for conditional gene activation in Nicotiana benthamiana. In the presence of copper, the copper-responsive factor CUP2 undergoes a conformational change and binds a DNA motif named copper-binding site (CBS). RESULTS: In this study, we tested several activation domains fused to CUP2 and found that the non-viral Gal4 domain results in strong activation of a reporter gene equipped with a minimal promoter, offering advantages over previous designs. To connect copper regulation with downstream programmable elements, several copper-dependent configurations of the strong dCasEV2.1 PTA were assayed, aiming at maximizing activation range, while minimizing undesired background expression. The best configuration involved a dual copper regulation of the two protein components of the PTA, namely dCas9:EDLL and MS2:VPR, and a constitutive RNA pol III-driven expression of the third component, a guide RNA with anchoring sites for the MS2 RNA-binding domain. With these optimizations, the CI/dCasEV2.1 system resulted in copper-dependent activation rates of 2,600-fold and 245-fold for the endogenous N. benthamiana DFR and PAL2 genes, respectively, with negligible expression in the absence of the trigger. CONCLUSIONS: The tight regulation of copper over CI/dCasEV2.1 makes this system ideal for the conditional production of plant-derived metabolites and recombinant proteins in the field.


Asunto(s)
Sistemas CRISPR-Cas , Nicotiana , Sistemas CRISPR-Cas/genética , Cobre , Expresión Génica , Plantas/genética , Nicotiana/genética , Activación Transcripcional
6.
bioRxiv ; 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34189528

RESUMEN

With global vaccination efforts against SARS-CoV-2 underway, there is a need for rapid quantification methods for neutralizing antibodies elicited by vaccination and characterization of their strain dependence. Here, we describe a designed protein biosensor that enables sensitive and rapid detection of neutralizing antibodies against wild type and variant SARS-CoV-2 in serum samples. More generally, our thermodynamic coupling approach can better distinguish sample to sample differences in analyte binding affinity and abundance than traditional competition based assays.

7.
Nature ; 591(7850): 482-487, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33503651

RESUMEN

Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.


Asunto(s)
Anticuerpos Antivirales/análisis , Técnicas Biosensibles/métodos , Virus de la Hepatitis B/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Troponina I/análisis , Anticuerpos Antivirales/inmunología , Técnicas Biosensibles/normas , Toxinas Botulínicas/análisis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Límite de Detección , Luminiscencia , Fosfoproteínas/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Receptor ErbB-2/análisis , Sensibilidad y Especificidad , Proteínas de la Matriz Viral/inmunología
8.
Biodes Res ; 2021: 9891082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37849952

RESUMEN

Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing (Z)-11-hexadecenol (Z11-16OH) and (Z)-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into Nicotiana benthamiana plants. The constructs contained the Amyelois transitella AtrΔ11 desaturase gene, the Helicoverpa armigera fatty acyl reductase HarFAR gene, and the Euonymus alatus diacylglycerol acetyltransferase EaDAct gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the EaDAct gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 µg g-1 FW) and high levels of Z11-16OH (111.4 µg g-1). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g-1 FW per day for Z11-16OH and 9.44 ng g-1 FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.

9.
Science ; 369(6511): 1637-1643, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32820060

RESUMEN

Precise cell targeting is challenging because most mammalian cell types lack a single surface marker that distinguishes them from other cells. A solution would be to target cells using specific combinations of proteins present on their surfaces. In this study, we design colocalization-dependent protein switches (Co-LOCKR) that perform AND, OR, and NOT Boolean logic operations. These switches activate through a conformational change only when all conditions are met, generating rapid, transcription-independent responses at single-cell resolution within complex cell populations. We implement AND gates to redirect T cell specificity against tumor cells expressing two surface antigens while avoiding off-target recognition of single-antigen cells, and three-input switches that add NOT or OR logic to avoid or include cells expressing a third antigen. Thus, de novo designed proteins can perform computations on the surface of cells, integrating multiple distinct binding interactions into a single output.


Asunto(s)
Computadores Moleculares , Ingeniería de Proteínas/métodos , Proteínas/química , Antígenos de Superficie/química , Membrana Celular/química , Conformación Proteica
10.
bioRxiv ; 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32743576

RESUMEN

Naturally occurring allosteric protein switches have been repurposed for developing novel biosensors and reporters for cellular and clinical applications 1 , but the number of such switches is limited, and engineering them is often challenging as each is different. Here, we show that a very general class of allosteric protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which binding of a peptide key triggers biological outputs of interest 2 . Using broadly applicable design principles, we allosterically couple binding of protein analytes of interest to the reconstitution of luciferase activity and a bioluminescent readout through the association of designed lock and key proteins. Because the sensor is based purely on thermodynamic coupling of analyte binding to switch activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We demonstrate the modularity of this platform by creating biosensors that, with little optimization, sensitively detect the anti-apoptosis protein Bcl-2, the hIgG1 Fc domain, the Her2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac Troponin I and an anti-Hepatitis B virus (HBV) antibody that achieve the sub-nanomolar sensitivity necessary to detect clinically relevant concentrations of these molecules. Given the current need for diagnostic tools for tracking COVID-19 3 , we use the approach to design sensors of antibodies against SARS-CoV-2 protein epitopes and of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The latter, which incorporates a de novo designed RBD binder, has a limit of detection of 15pM with an up to seventeen fold increase in luminescence upon addition of RBD. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.

11.
Curr Opin Chem Biol ; 56: 119-128, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32371023

RESUMEN

Engineered proteins are revolutionizing immunotherapy, but advances are still needed to harness their full potential. Traditional protein engineering methods use naturally existing proteins as a starting point, and therefore, are intrinsically limited to small alterations of a protein's natural structure and function. Conversely, computational de novo protein design is free of such limitation, and can produce a virtually infinite number of novel protein sequences, folds, and functions. Recently, we used de novo protein engineering to create Neoleukin-2/15 (Neo-2/15), a protein mimetic of the function of both interleukin-2 (IL-2) and interleukin-15 (IL-15). To our knowledge, Neo-2/15 is the first de novo protein with immunotherapeutic activity, and in murine cancer models, it has demonstrated enhanced therapeutic potency and reduced toxicity compared to IL-2. De novo protein design is already showcasing its tremendous potential for driving the next wave of protein-based therapeutics that are explicitly engineered to treat disease.


Asunto(s)
Interleucina-15/química , Interleucina-15/inmunología , Interleucina-2/química , Interleucina-2/inmunología , Neoplasias/terapia , Secuencia de Aminoácidos , Animales , Inmunoterapia , Ratones , Modelos Moleculares , Neoplasias Experimentales , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Relación Estructura-Actividad
12.
Nucleic Acids Res ; 48(6): 3379-3394, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083668

RESUMEN

Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.


Asunto(s)
ADN/genética , Nicotiana/genética , Siphoviridae/genética , Biología Sintética , Escherichia coli/genética , Integrasas/genética , Cinética , Recombinación Genética/genética , Nicotiana/virología , Proteínas Virales/genética
13.
Science ; 364(6441): 658-664, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31097662

RESUMEN

The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.


Asunto(s)
Conformación Proteica , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Concentración de Iones de Hidrógeno , Estabilidad Proteica
14.
Nature ; 565(7738): 186-191, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626941

RESUMEN

We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor ßγc heterodimer (IL-2Rßγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rßγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rßγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.


Asunto(s)
Diseño de Fármacos , Interleucina-15/inmunología , Interleucina-2/inmunología , Imitación Molecular , Receptores de Interleucina-2/agonistas , Receptores de Interleucina-2/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Simulación por Computador , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Interleucina-15/uso terapéutico , Interleucina-2/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ratones , Modelos Moleculares , Estabilidad Proteica , Receptores de Interleucina-2/metabolismo , Transducción de Señal/inmunología
15.
Nucleic Acids Res ; 45(4): 2196-2209, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28053117

RESUMEN

Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module.


Asunto(s)
Biología Computacional/métodos , ADN de Plantas , Plantas/genética , Plantas/metabolismo , Programas Informáticos , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Regiones Promotoras Genéticas , Protoplastos/metabolismo , Transcripción Genética , Interfaz Usuario-Computador , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...