Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(5): 106675, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250318

RESUMEN

This study explores the use of a brain-computer interface (BCI) based on motor imagery (MI) for the control of a lower limb exoskeleton to aid in motor recovery after a neural injury. The BCI was evaluated in ten able-bodied subjects and two patients with spinal cord injuries. Five able-bodied subjects underwent a virtual reality (VR) training session to accelerate training with the BCI. Results from this group were compared with a control group of five able-bodied subjects, and it was found that the employment of shorter training by VR did not reduce the effectiveness of the BCI and even improved it in some cases. Patients gave positive feedback about the system and were able to handle experimental sessions without reaching high levels of physical and mental exertion. These results are promising for the inclusion of BCI in rehabilitation programs, and future research should investigate the potential of the MI-based BCI system.

2.
Front Neurosci ; 17: 1154480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998726

RESUMEN

Introduction: Brain-machine interfaces (BMIs) attempt to establish communication between the user and the device to be controlled. BMIs have great challenges to face in order to design a robust control in the real field of application. The artifacts, high volume of training data, and non-stationarity of the signal of EEG-based interfaces are challenges that classical processing techniques do not solve, showing certain shortcomings in the real-time domain. Recent advances in deep-learning techniques open a window of opportunity to solve some of these problems. In this work, an interface able to detect the evoked potential that occurs when a person intends to stop due to the appearance of an unexpected obstacle has been developed. Material and methods: First, the interface was tested on a treadmill with five subjects, in which the user stopped when an obstacle appeared (simulated by a laser). The analysis is based on two consecutive convolutional networks: the first one to discern the intention to stop against normal walking and the second one to correct false detections of the previous one. Results and discussion: The results were superior when using the methodology of the two consecutive networks vs. only the first one in a cross-validation pseudo-online analysis. The false positives per min (FP/min) decreased from 31.8 to 3.9 FP/min and the number of repetitions in which there were no false positives and true positives (TP) improved from 34.9% to 60.3% NOFP/TP. This methodology was tested in a closed-loop experiment with an exoskeleton, in which the brain-machine interface (BMI) detected an obstacle and sent the command to the exoskeleton to stop. This methodology was tested with three healthy subjects, and the online results were 3.8 FP/min and 49.3% NOFP/TP. To make this model feasible for non-able bodied patients with a reduced and manageable time frame, transfer-learning techniques were applied and validated in the previous tests, and were then applied to patients. The results for two incomplete Spinal Cord Injury (iSCI) patients were 37.9% NOFP/TP and 7.7 FP/min.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 402-405, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086011

RESUMEN

In this paper, the paradigm of the intention of speed changes from EEG signals with Riemannian classifiers methods is studied in 10 subjects. In addition, the best frequency band and how different electrode configurations affect the accuracy of the model are analyzed. In the prediction of the intention to change speed, results of 68.6% were obtained, in the one of only Increase, results of 64.41 % were obtained, and in the one of only Decrease, results of 71.5% were obtained.


Asunto(s)
Electroencefalografía , Intención , Electrodos , Electroencefalografía/métodos , Humanos
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4064-4067, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086336

RESUMEN

Spinal Cord Injury (SCI) refers to damage to the spinal cord that can affect different body functionalities. Recovery after SCI depends on multiple factors, being the rehabilitation therapy one of them. New approaches based on robot-assisted training offer the possibility to make training sessions longer and with a reproducible pattern of movements. The control of these robotic devices by means of Brain-Machine Interfaces (BMIs) based on Motor Imagery (MI) favors the patient cognitive engagement during the rehabilitation, promoting mechanisms of neuroplasticity. This research evaluates the acceptance and feedback received from patients with incomplete SCI about the usage of a MI-based BMI with a lower-limb exoskeleton. Clinical Relevance- Patients experienced satisfaction when using the exoskeleton and levels of mental and physical workload were withing reasonable limits. In addition results from the BMI were promising for the inclusion of this type of systems in rehabilitation programs.


Asunto(s)
Interfaces Cerebro-Computador , Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Índice de Masa Corporal , Humanos , Extremidad Inferior , Traumatismos de la Médula Espinal/rehabilitación
5.
Sensors (Basel) ; 22(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015835

RESUMEN

The monitoring of machine conditions is very important from the viewpoints of productivity, economic benefits, and maintenance. Several techniques have been proposed in which sensors are the key to providing relevant information to verify the system. Recently, the smart sensor concept is common, in which the sensors are integrated with a data processing unit executing dedicated algorithms used to generate meaningful information about the system in situ. Additionally, infrared thermography has gained relevance in monitoring processes, since the new infrared cameras have more resolution, smaller dimensions, reliability, functionality, and lower costs. These units were firstly used as secondary elements in the condition monitoring of machines, but thanks to modern techniques for data processing, the infrared sensors can be used to give a first, or even a direct, diagnosis in a nonintrusive way in industrial applications. Therefore, in this manuscript, the structure and development of an infrared-thermography-based smart sensor for diagnosing faults in the elements associated with induction motors, such as rolling bearings and the gearbox, is described. The smart sensor structure includes five main parts: an infrared primary sensor, a preprocessing module, an image processing module, classification of faults, and a user interface. The infrared primary sensor considers a low-cost micro thermal camera for acquiring the thermal images. The processing modules and the classification module implement the data processing algorithms into digital development boards, enabling smart system characteristics. Finally, the interface module allows the final users to require the smart sensor to perform processing actions and data visualization, with the additional feature that the diagnosis report can be provided by the system. The smart sensor is validated in a real experimental test bench, demonstrating its capabilities in different case studies.


Asunto(s)
Algoritmos , Termografía , Reproducibilidad de los Resultados , Termografía/métodos
6.
Biosensors (Basel) ; 12(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892452

RESUMEN

In the EEG literature, there is a lack of asynchronous intention models that realistically propose interfaces for applications that must operate in real time. In this work, a novel BMI approach to detect in real time the intention to turn is proposed. For this purpose, an offline, pseudo-online and online analysis is presented to validate the EEG as a biomarker for the intention to turn. This article presents a methodology for the creation of a BMI that could differentiate two classes: monotonous walk and intention to turn. A comparison of some of the most popular algorithms in the literature is conducted. To filter the signal, two relevant algorithms are used: H∞ filter and ASR. For processing and classification, the mean of the covariance matrices in the Riemannian space was calculated and then, with various classifiers of different types, the distance of the test samples to each class in the Riemannian space was estimated. This dispenses with power-based models and the necessary baseline correction, which is a problem in realistic scenarios. In the cross-validation for a generic selection (valid for any subject) and a personalized one, the results were, on average, 66.2% and 69.6% with the best filter H∞. For the pseudo-online, the custom configuration for each subject was an average of 40.2% TP and 9.3 FP/min; the best subject obtained 43.9% TP and 2.9 FP/min. In the final validation test, this subject obtained 2.5 FP/min and an accuracy rate of 71.43%, and the turn anticipation was 0.21 s on average.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Biomarcadores , Electroencefalografía/métodos , Intención , Caminata
7.
Brain Sci ; 12(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35204011

RESUMEN

This article presents an exhaustive analysis of the works present in the literature pertaining to transcranial direct current stimulation(tDCS) applications. The aim of this work is to analyze the specific characteristics of lower-limb stimulation, identifying the strengths and weaknesses of these works and framing them with the current knowledge of tDCS. The ultimate goal of this work is to propose areas of improvement to create more effective stimulation therapies with less variability.

8.
Int J Neural Syst ; 31(11): 2150015, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33637029

RESUMEN

Brain-Computer Interfaces (BCIs) are becoming an important technological tool for the rehabilitation process of patients with locomotor problems, due to their ability to recover the connection between brain and limbs by promoting neural plasticity. They can be used as assistive devices to improve the mobility of handicapped people. For this reason, current BCIs have to be improved to allow an accurate and natural use of external devices. This work proposes a novel methodology for the detection of the intention to change the direction during gait based on event-related desynchronization (ERD). Frequency and temporal features of the electroencephalographic (EEG) signals are characterized. Then, a selection of the most influential features and electrodes to differentiate the direction change intention from the walking is carried out. Best results are obtained when combining frequency and temporal features with an average accuracy of [Formula: see text]%, which are promising to be applied for future BCIs.


Asunto(s)
Interfaces Cerebro-Computador , Intención , Electroencefalografía , Marcha , Humanos , Movimiento
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3835-3838, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018837

RESUMEN

This paper studies the direction changes during the gait by means of two different distributions of electrodes located in the motor, premotor and occipital areas. The objective is analyzing which areas are involved in the detection of the intention of turning while the person is walking. The signals in both options are characterized with frequency and temporal features and classified following a cross-validation process. A 95% of success rate is achieved when the electrodes are disposed along the motor, premotor and occipital areas.Clinical Relevance- The objective of this study is applying the acknowledgements obtained in the designing of a brain-machine interface (BMI) based in the detection of the intention of the direction change during the gait. This BMI has clinical relevance in the rehabilitation of the gait in patients with motor injuries, assisting the patient to perform the movements as realistic as it is possible.


Asunto(s)
Interfaces Cerebro-Computador , Marcha , Electrodos , Humanos , Movimiento , Caminata
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4737-4740, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019049

RESUMEN

Spinal cord injury (SCI) limits life expectancy and causes a restriction of patient's daily activities. In the last years, robotics exoskeletons have appeared as a promising rehabilitation and assistance tool for patients with motor limitations, as people that have suffered a SCI. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs), as they can be used to foster patients' neuroplasticity. However, there are not many studies showing the use of BMIs to control exoskeletons with patients. In this work we show a case study where one SCI patient has used a BMI based on motor imagery (MI) in order to control a lower limb exoskeleton that assists their gait.


Asunto(s)
Interfaces Cerebro-Computador , Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Marcha , Humanos , Extremidad Inferior
11.
Sensors (Basel) ; 19(24)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835546

RESUMEN

The aim of this paper is to describe new methods for detecting the appearance of unexpected obstacles during normal gait from EEG signals, improving the accuracy and reducing the false positive rate obtained in previous studies. This way, an exoskeleton for rehabilitation or assistance of people with motor limitations commanded by a Brain-Machine Interface (BMI) could be stopped in case that an obstacle suddenly appears during walking. The EEG data of nine healthy subjects were collected during their normal gait while an obstacle appearance was simulated by the projection of a laser line in a random pattern. Different approaches were considered for selecting the parameters of the BMI: subsets of electrodes, time windows and classifier probabilities, which were based on a linear discriminant analysis (LDA). The pseudo-online results of the BMI for detecting the appearance of obstacles, with an average percentage of 63.9% of accuracy and 2.6 false positives per minute, showed a significant improvement over previous studies.


Asunto(s)
Electroencefalografía/métodos , Marcha/fisiología , Monitoreo Fisiológico , Caminata/fisiología , Adulto , Algoritmos , Interfaces Cerebro-Computador , Electrodos , Dispositivo Exoesqueleto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA